
Concurrent execution of
automatically generated
plans in Smart Homes

Master’s thesis

August 2011

Student: E. Lazovik

Primary supervisor: Prof. dr. ir. M. Aiello

Secondary supervisor: Prof. dr. ir. P. Avgeriou

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

A B S T R A C T

An application area where heterogeneity is a norm is that of pervasive
systems, where thousands of autonomous heterogeneous devices live
together and need to interoperate. In particular, domotics is concerned
with technology that pervades the home in order to make it more
pro-active and aware with the final goal of increasing security and
comfort of its inhabitants.

This thesis focuses on Smart Homes, that is, homes that contain
heterogeneous interactive and pro-active devices, that adapt their be-
havior to the needs of the home inhabitant through extensive interoper-
ation and user interaction. For example, a movie may be automatically
paused when the user leaves the room, and then launched again when
s/he is back; windows are automatically opened to regulate the air
condition or as a reaction to gas leak, and so on. One of the greatest
challenges in developing middleware for smart homes is that this
kind of systems are in need for the orchestration of the heterogeneous
services within complex environment. Therefore, a special orchestra-
tion engine is needed to be implemented in order to provide efficient
concurrent execution of complex scenarios. For every scenario from
different users a special plan is generated automatically. These plans
should be executed concurrently in the most efficient way.

The thesis is dedicated to the implementation of the orchestration
engine capable of controlling concurrent execution of automatically
generated plans for complex scenarios within Smart Homes and dis-
cusses the advantages of the chosen approach.

iii

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

C O N T E N T S

1 introduction 1

2 related work 3

2.1 Projects in the field of Smart Homes 3

2.2 Concurrent Execution in Pervasive Systems 6

3 sm4all project 9

3.1 Architecture of SM4ALL 11

4 orchestration model for the sm4all project 15

4.1 Responsibilities 15

4.2 Dependencies 15

4.3 Formal orchestration model 16

5 orchestrator implementation 21

5.1 Event-Based Actor Scheme 21

5.2 Process model 22

5.3 Basic Components 22

5.4 Communication with Environment 29

6 the scenarios and orchestrator running 31

7 testing and evaluation of the solution 37

7.1 Critical section test 37

7.2 Dining Philosophers test 38

7.3 The Evaluation of the Solution 41

8 conclusions and discussions 47

a appendix 49

b appendix 53

c appendix c 59

v

[September 1, 2011 at 15:32]

L I S T O F F I G U R E S

Figure 1 Global view of the system and interaction with
environment. 9

Figure 2 Architecture of the SM4ALL platform [21]. 12

Figure 3 Planner within the system. 14

Figure 4 Execution of the plans locking independent re-
sources. 32

Figure 5 Execution of the plans locking one type of the
unique resource. 33

Figure 6 Execution of the plans locking the same type of
the unique resource for step 2. 34

Figure 7 Execution of the plans locking the unique re-
sources in reversed order. 35

Figure 8 Maximum number of conflicts depending on the
number of working threads. 42

Figure 9 Maximum number of locks conflicts depending
on the number of working threads. 43

Figure 10 Percentage of CPU use depending on the num-
ber of working threads. 44

Figure 11 Percentage of CPU use depending on the num-
ber of working threads through Windows panel. 44

Figure 12 Total memory used for execution depending on
the number of working threads. 45

Figure 13 Execution time depending on the number of
concurrent threads. 45

L I S T O F TA B L E S

Table 1 Maximum number of conflicts depending on the
number of working threads. 41

Table 2 Maximum number of the concurrent conflicts de-
pending on the number of working threads. 42

Table 3 Maximum number of the concurrent conflicts
depending on the number of working threads
(in %). 43

Table 4 Total memory used depending on the number
of working threads. 43

vi

[September 1, 2011 at 15:32]

List of Tables vii

Table 5 Time of execution depending on the number of
working threads. 45

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

1
I N T R O D U C T I O N

Due to the ever increasing availability of cheap sensors and actuators,
homes are becoming more technological [9]. This goes well beyond
the ‘gadgetification’ of the house of the early adopters and wealthy
families, as domotic solutions are becoming massively accessible for
creating more secure and comfortable living spaces. Such trend is
welcomed by the general public in as much as by the people who
have special needs such as limited mobility or invalidity. The current
shift does not simply provide for homes with hundreds of sensors
and actuators, but also for a different way of controlling the home and
even interacting with it. If in the past one had direct command-effect
interactions or, at most, simple feedback loops, now we are going
towards smart pro-active homes [8]. The idea is that quality of life
will improve when not only we have means to mechanize domestic
activities, but when we also are immersed in an environment that
is aware of its inhabitants, of the user activities and adapts itself to
best support us. This can be done by resorting to software solutions
and embedded systems specifically tailored for home deployment.
The software is mostly responsible of coordinating devices and actua-
tors that are dynamically available in the home, while coupling the
coordination with sensing activities.

In the following chapters the presented work focuses on dealing
with the issues of concurrent execution of the automatically generated
plans for domotics. This work is carried out as a part of the EU STREP
Project FP7-224332 Smart Homes for All [21]. Its main contribution
to the European Project is providing a solution for an orchestration
engine for the heterogeneous devices in Smart Home environments.
A mere fact of having many technological devices at home does not
still makes the house “smart”. Only by means of special middleware
capable of the composition of the services and turning the devices’
actions into complex plans can we achieve a really smart environment
able to support us in every ady life. However, some of the devices
or service are of limited number within the house. When more than
one person wants to achieve his/her goal and the different plans
involve the same resource, some measures should be taken in order to
resolve possible plans conflicts and allow the plans smoothly proceed.
Therefore, there is a need of a special orchestration engine which
can execute complex plans simultaneously even facing the limited
resources conditions. Thus, orchestrator is one of the most important
parts of the system. Therefore, the main objective of the presented
work is to provide a valid solution to the problem of concurrent

1

[September 1, 2011 at 15:32]

2 introduction

execution of complex plans. Additionally, the investigation how the
Actors scheme can be used to incorporate event-based scenarios into
the smart home is conducted. Finally, a prototype of the orchestration
engine is developed.

In Chapter 2 we present a related work in the field of Smart Home
environment and concurrent execution of the programs in pervasive
systems. There is some research performed in these and close areas.

Chapter 3 is dedicated to the general overview of the SM4ALL
project and to its architecture.

As the orchestration engine is a part of the SM4LL middleware and
takes responsibility for execution of complex plans, the Chapter 4

provides a general survey on the Orchestrator module including its
responsibilities and dependencies from other modules of the middle-
ware with pointing out the formal model for the orchestration of the
plans.

Chapter 5 demonstrates the basic components of the orhcestration
engine in action and provides explanation to the particular details
of the concurrent algorithm for the resources of limited number. The
issues of coordination of work between the different executor machines
and communication with the environment are also covered in this
Chapter.

The correct solution for the orchestration engine leads to the im-
possibility of having the deadlocks and race conditions among the
concurrently executed plans. Chapter 6 focuses on possible scenarios
for the orchestrator concerning the limited type of the resources and
demonstrates that the system is able to avoid the obstacles.

To verify and validate the system a special evaluation could be
performed through the testing experiments. Chapter 7 shows the
results of the orchestration testing and provides an explanation for
the behavior of the system using the number of concurrent threads as
a basic metric.

Finally, Chapter 8 represents the main conclusions for this work
and proposes the directions for future development in the area of
concurrent execution within Smart Homes environment.

[September 1, 2011 at 15:32]

2
R E L AT E D W O R K

The related work could be approached from two different points. There
are some projects that are similar to the SM4ALL. The orchestration
of the services is at the center of such projects because without the
composition it is impossible to use web services simultaneously.

At the same time pervasive systems are much more elaborated in
order to compose the services provided by the physical devices for
their concurrent execution. However, such solutions almost never were
applied to the Smart Homes environments.

Therefore, it is necessary to take into consideration the development
in the both areas.

2.1 projects in the field of smart homes

Nowadays, the Internet has become an indispensable part of our lives,
especially in developed countries. A vast number of daily services
have found a counterpart on the Internet. For example, activities such
as shopping, reading newspapers, booking hotels are available online
and people actively use them. Such services can also be accessed by
other services, not only directly by humans. This makes it possible to
create services which are actually nothing more than a combination of
other ones, e.g., travel portals use a number of finer-grained services,
such as hotel and flight booking, car rentals, etc.

These scenarios are not possible to realize unless standardized pro-
tocols are developed. Protocols are often presented as stacks of related
protocols taking care of different aspects, in the spirit of the famous
ISO/OSI Networking stack reference model. For Web interoperation,
there are a number of such protocol stacks. The most famous ones are
REST [14] and Web services [20, 12]. These protocol stacks are usually
formed by several layers, starting from low-level transport protocols,
e.g., SOAP [24], up to complex composition [13] and transaction [27]
languages. The newest development of such protocols is a JSON
(JavaScript Object Notation) wich is a lightweight data-interchange
format[17]. JSON is a text format that is completely language indepen-
dent what expands its application to many different domains.

The emerging success of service-oriented computing brings back
services from Internet to real life. Everyday devices, such as mobile
phone and media players, and even fridges and TV become smarter
and smarter, and often provide their functionalities in form of embed-
ded services. These services can be accessed through standardized
API, e.g., web services.

3

[September 1, 2011 at 15:32]

4 related work

Nowadays, the web services architecture is widely used as an archi-
tecture for creating different distributed computer systems. There are
some initiatives to present different frameworks for the orchestration
of web services.

One of the projects that concentrates on Smart Homes is a Duke
Smart Home Program which is the project of the Pratt school of
Engineering[2]. The goal of the Duke Smart Home Program is to offer
a research and educational program that emphasizes energy efficient,
sustainable and ’smarter’ living. Smarter living is defined as using
technology for automation in a way that encourages behavior the users
want and need to achieve the values of energy efficient, sustainable
living. The program operates and manages The Home Depot Smart
Home as an evolving resource purposefully used to inform our ideas
about sustainable, energy efficient, smart living. Many students have
composed the teams and developed different projects for use within
Smart Homes. The majory of the projects focuses on tracking people
or transport movement in stdent campus by using different types of
sensors. All the projects do not deal with the very complex scenarios,
and, therefore, a little interest was paid to the orchestration of the
services. However, this question will arise for them in the future as
they plan to merge some projects together to provide better services
using orchestration concept. Respect to this project SM4ALL is in
advantage because it already tackles complex scenarios.

One of the main objective of Smart Homes is to help inhabitants
with the different types of disabilities. A special organization is cre-
ated to help blind and partially sighted people as a part of Tiresias
organization[1] wich is an assosiation of many hospitals and some
IT-companies as a special organization in the United Kingom. The
Digital Accessibility Team (DAT) is involved in influencing the re-
search and development of new technologies for the future benefit of
blind and partially sighted people and in providing standards and
research to improve the design of equipment to ensure it is accessible
by people with sight problems. DAT is continuing its work in the areas
of Human Computer Interaction (HCI) by participating in a number
of British Standards Institute (BSI) groups including ICT/6 ICT Acces-
sibility Coordination Panel, IST/45 Web Accessibility Committee and
PH/9 Applied Ergonomics Committee. Along with this, DAT is also
involved in a number of research initiatives and other projects in these
areas. One of their projects is “Ambient Intelligence System of Agents
for Knowledge-Based and Integrated Services for Mobility Impaired
Users (ASK-IT)”[3]. The research was expected to be conducted the
orchestration of the services for the blind and partially sighted people.
However, the project focused more on sensor activities and dealing
with them independently. For such kind of project the orchestration is
not needed. A simple job scheduler can deal with that type of work.
However, nowadays people want not only to be able to control the

[September 1, 2011 at 15:32]

2.1 projects in the field of smart homes 5

devices independently, but to compose the services into complex plans
with the ultimate goals to satisfy their needs. That requires a smart
planner module together with the orchestration engine.

Another project for support of the independent living of ageing
people is Netcarity [6]. Netcarity is a European project researching
and testing technologies which will help older people to improve their
wellbeing, independence, safety and health at home. The project is
investigating how new and existing technologies can be integrated cost
effectively into people’s homes, making them feel more comfortable
about remaining in this familiar environment. It is developing and
testing a new technology infrastructure for homes, with systems that
enhance communication with friends, family and care givers; support
everyday living and promote a sense of social inclusion. It will encour-
age older people to live independently and inspire them to be more
socially active. Netcarity’s goal is to turn older peoples’ homes into
supportive environments which include them in society and postpone
or avoid the expensive and traumatic move into care homes. There
are some products already ready to use from this project. Howeverer,
thr most of them is concentrated on the home automation without
further integration of services. In other cases when the integration is
provided it is assumed that the person lives alone, and therefore, all
the requests from the inhabitant are executed in a sequential order
without bothering about concurrent requests for the same resources.

One of the close to the SM4ALL project in terms of orchestration
and distributed communication is the project DAFFIE of the Boston
university [4]. DAFFIE is a software package and network architecture
for building distributed/collaborative tele-immersive environments
from pre-existing data which supports dynamic behaviors through the
use of networked agents. DAFFIE provides participant representations
by avatars, multiple virtual spaces, animated models, 3D localized
sound using 2-8 audio channels, and network-based telephony. It cur-
rently runs on SGI workstations and supports ImmersaDesks, CAVEs,
SGI graphics workstations, and head-mounted displays. DAFFIE is
being ported to run on a number of other Unix and NT platforms.
DAFFIE is designed to run on high-speed, low-latency networks, such
as the vBNS and Internet. A running DAFFIE world includes an event
server, immersive viewer clients, sound (e.g. telephony) generator and
sound player clients. Additional sites may participate using viewer
clients, sound clients, and autonomous agents, joining or leaving at
any time. Here it is possible to see the network of agents that are con-
nected with each other. This project is close to SM4ALL project in the
terms of network agents communicating with other agents by sending
messages. However, there is also a big difference for orchestration of
the provided services. It does not include any web service and any
other interaction between different participants except their messages
through special hardware. Every request to the system is independent

[September 1, 2011 at 15:32]

6 related work

from the others. The requested resources could be limited, but if the
user does not receive the resource, the next request for this resource
is considered to be new. There is no history for the requests, and the
orchestration of the request is off the picture. There some ideas that
may be useful from that world including interaction between avatars,
the sound system and the system of messaging. As the objectives of
the system are different from domotics, the problems of embedded
web services within smart homes are on the backstage of this system.

Some other projects could be found where Smart Homes are in-
volved through Internet. Nowadays, there is a huge amount od projects
of such type. However, any of them could provide a reliable and ef-
fective solution for the concurrent execution of the complex plans,
especially with the existing of limited types of resources. Smart Homes
For All European project [21] is the first project tackling this issue. The
presented work is part of this project, therefore, the prject is described
further in the work.

2.2 concurrent execution in pervasive systems

There are some products which support concurrent execution of dif-
ferent processes that are presented at the market nowadays. They
propose solution for the different users to launch their processes
simultaneously.

An example of such products is Pervasive SQL Client Running
on Citrix Server[23]. This solution assumes that there are pervasive
clients that could simultaneously access database via SQL interface.
This solution is good for the enterprises with the centralized server
and database. However, in distributed system envorionment we deal
with the possibly huge amount of devices and servers. That means,
that Citrix server solution could not be completely adapted in Smart
Homes.

Another example of the product currently in market is Btrieve[22].
Btrieve is a transactional database (navigational database) software
product. It is based on Indexed Sequential Access Method (ISAM),
which is a way of storing data for fast retrieval. It is scalable solution,
however, it is again developed for the fast retrieval of the data from
database. In Smart Homes we have many devices that want to write
their information to one of the databases simultaneously. It is much
more likely, that we have more writes than reads. Therefore, this
solution is still not completely suitable for solving the problem of
concurrent execution of complex scenarios in Smart Homes.

Some research has been done by different pervasive communities in
order to solve the task of concurrent execution in ever changing envi-
ronment. One the teqniques is static slicing for pervasive programs[15].
It helps to achieve the clearer definition of the states of the system
considering the state of the every device in the environment. However,

[September 1, 2011 at 15:32]

2.2 concurrent execution in pervasive systems 7

it does not completely solve the problem of concurrent execution of
the processes in the Smart Homes middleware. The focus of the article
is how to capture the state of the system to make the decisions for
plan. The execution itself is not taken into consideration.

One of the main challenges imposed on context consistency checking
by asynchronous environments is how to interpret and detect con-
current events. To this end, Nanjing pervasive community proposed
the paper about the Concurrent Events Detection for Asynchronous
consistency checking (CEDA) algorithm[16]. An analytical model, to-
gether with corresponding numerical results, is derived to study the
performance of CEDA. They also conducted extensive experimental
evaluation to investigate whether CEDA is desirable for context-aware
applications. Both theoretical analysis and experimental evaluation
show that CEDA accurately detects concurrent events in time in asyn-
chronous pervasive computing environments, even with dynamic
changes in message delay, duration of events and error rate of context
collection. It is a very interesting work, however, it does not deal with
the execution of concurrent processes in conditions of having limited
amount of resources.

There are some other research activities in area of pervasive systems,
however, almost all of them are focused on fast access to centralized
databases or on context consistency of the changing pervasive environ-
ment. There is not any research done in sphere of concurrent processes
dealing with the limited number of the resources. That is why this
work proposes a solution to this problem.

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

3
S M 4 A L L P R O J E C T

The European project SM4ALL - Smart Homes For All is the project
where an embedded middleware platform for pervasive and immer-
sive environments is being developed. This innovative middleware
platform is designed for the interaction of smart embedded devices
within the home environments as it is presented in Figure 1.

Figure 1: Global view of the system and interaction with environment.

Embedded systems are specialized computers used in machines and
other equipment as the controllers of the behaviour of that machines.
Within the framework of this European project every embedded pro-
gram represents web service interacting with human user through the
special interface. From the point of view of web service that interface
is the client who can ask for some actions to be performed.

The way of interaction is presented through compositional and se-
mantics techniques for dynamic services reconfiguration. The platform
is largely scalable and robust because of the use of Peer-to-Peer tech-
nologies. At the same time it preserves person privacy and enhances
the security of the whole environment. This platform is applied to the
homes of the persons with different capabilities: from young healthy
people to the aged and disabled.

The project is aimed to integrate devices to simplify the access to
the services provided by these devices and to compose web services in
order to give a simple access to complex functionalities for the users
within smart home environment.

9

[September 1, 2011 at 15:32]

10 sm4all project

The input for the platform is expected from the user and the re-
sponse to the input is the change in home environment. Some actions
will be performed to achieve the most common task which will be
taken from user input. As an example, one could imagine that user
wants to take a shower. The response from the system will be warming
of the bathroom, turning on the water and warming it.

All favourite user values for the temperature, gas and other devices
can be stored at the User Preferences. User Preferences is a database
containing pairs of key-value, where key is the name of the preference
(e.g., preferred water temperature) and the value is what user likes.

Some functions should be executed by the system on the perma-
nent basis without the request of the user. This is concerned to the
temperature inside the house, monitoring of the possible gas leakage.
System is responding automatically in case of lowering the home
temperature or of gas leakage. It is performing some actions to resolve
the problem. In case of gas leakage it opens the window immediately,
then presents the notification on the screen for user, etc. In case of
lowering temperature it automatically turns on boiler to warm the
house to reach the preferred temperature. As these actions are inde-
pendent from the user personality, another database is considered
which is called Rule Preferences. User can insert preferred values for
such permanent actions and monitoring. For example, s/he can add
preferred permanent value for the temperature of the house.

This way there are two different databases for the preferences of
the user. One of them contains the preferences of the concrete user
concerning her/his special needs. And the second database contains
information about the preferred values of users for monitoring the
home environment on the permanent basis.

As it has been said before, the system is designed for the wide range
of users. Therefore, it will have many different interfaces for the users
of different capabilities. In one case it can be device with the keyboard
to print the input, in other case it can be device which recognizes voice
commands of the user.

The house is the dynamic environment as people like to change the
position of furniture and devices through the time. System is designed
to support such changes as well as discover new devices with the
functionality of web services. In order to reach these goals the system
needs to be largely scalable.

Context awareness is another important feature for the system of
such type. People are not typically at the same place inside house
for a long time during the day. System executes some activities on
permanent basis, and if the location of the person is unknown there
is a possibility to execute some action which will be damaging to
person. For example, person is near the window and the system
decides to open the window to get fresh air for the room. The person
can be traumatized by opening window. To avoid such damaging

[September 1, 2011 at 15:32]

3.1 architecture of sm4all 11

coincidences the system is being designed to take into account the
context awareness.

Security of the system and privacy of the person are key require-
ments to be dealt with. Nobody wants their neighbour to know the
daily activities inside the home. Therefore, the platform is being de-
signed in order to deny any unauthorized access to the system data.

The middleware needs to be tested, validated and verified. How-
ever, to have a real house with the installed devices, huge amount of
sensors and a middleware is very expensive. For this reason a special
visualization and simulation environment (ViSi)[19, 7] was developed
by using the Google SketchUp tool[5].

3.1 architecture of sm4all

Different technologies of wide range of devices are expected to be
part of the SM4All architecture and interoperate through the SM4All
middleware. Due to this fact there is an abstract communication layer
supporting standard Peer-to-Peer as one component of the global
platform architecture. This component is called Peer-to-Peer Home
Gateway. The gateway is an interface between pervasive layer and
platform middleware. The UPnP (Peer-to-Peer) approach to the system
has many advantages:

• compatibility with many communication standards;

• discovery of the new devices having web service functionalities;

• management of failures of the smart home web services;

• simple way to remove unnecessary devices.

As it can be seen in Figure 2 the middleware contains a set of logical
components distributed among three different layers:

• User layer;

• Composition layer;

• Pervasive layer.

3.1.0.1 User layer

User layer is the interaction layer. It is dedicated to the interaction of
the system with different types of users. Due to the different commu-
nication technologies it is realized through different User Interfaces.
From the point of global view one can see this layer as one logical
component: User Interface. It is the component built to get user input
which will become the service invocation at the level of lower layers.

Such interfaces will be used by users to establish new goal to achieve,
to set their individual preferences or to put preferable rules for the
automatic monitoring and control of the home on the permanent basis.

[September 1, 2011 at 15:32]

12 sm4all project

!"#$%&'(#$)*+#%

,-.#%/*0'(#'*'+#%

1'20'#%

3$+4#"($*56'%

1'20'#%
,#76"0(6$8% 96+*56'%

:8'(4#"0"%

:#$;0+#%<*(#=*8%

>6'(#?(%

@=*$#'#""%

A#;0+#"%

B
#
$;
*
"0
;
#
%

9
*
8
#
$%

>
6
C
7
6
"0
5
6
'
%

9
*
8
#
$%

!
"#
$%

9
*
8
#
$%

Figure 2: Architecture of the SM4ALL platform [21].

3.1.0.2 Composition layer

The main goal of the composition layer of the middleware is to receive
user input on the high level language from user interface, to fulfill
goals to achieve and to control the execution of the services provided
by smart home devices deployed within the middleware platform.

Following logical elements constitute the composition layer:

• Repository. It is a general repository for descriptors of services,
different ontologies and other types of data;

• Synthesis. This logical component receives user input from the
upper User layer or from the Rule Maintenance Engine and
composes concrete Plans. Synthesis is purposed to translate a
high-level complex goal into the sequence of more simple actions
that can be assigned to different devices having corresponding
web service functionalities. The translation of the high-level goal
is conducted according to the information from the Context
Awareness logical component;

• Orchestration Engine. This engine receives the Plan from the
Synthesis logical component and constructs the set of the web
services available from devices deployed within the middleware
platform. Thus, Plan can be executed with actual services. The
orchestration is executed while interacting with the Repository
data containing web services descriptors.

• Rule Maintenance Engine. This engine is constructed in order
to maintain automatic actions of the system inside smart home

[September 1, 2011 at 15:32]

3.1 architecture of sm4all 13

environment. It activates some functionalities when special deter-
mined conditions are hold. It means that Rules are activated de-
pending on the Conditions. The Conditions are inserted through
User layer as Rule Preferences for smart home. The Plans con-
structing depends on the Context Awareness and Location logi-
cal components.

• Context Awareness. This component collects data from devices,
processes and stores the resulted values in order to provide up-
to-date information about real environment and current status
of the system. These results represent the context for all layers
of the middleware. User preferences and Rule preferences are
the parts of the context too.

• Location. This component is constructed to contain an important
information for the whole context. It contains locations of the
objects and people inside the smart home environment where
middleware is running. Specific logical component was elabo-
rated for such kind of information because complex mechanisms
are involved in calculating the locations of people and objects
within the home.

Logical components Context Awareness and Location are permanently
interacting with Pervasive layer in order to receive up-to-date data
from physical devices with embedded web services systems.

To deal with complex scenarios within smart home a planning
system is a necessary element of the Composition layer. It synthesizes
plans on-the-fly based on goals given by home inhabitants[18].

The goal is specified through one of the possible interfaces, be it
brain-computing interface, mobile device, voice-recognition, or, pos-
sibly, other software. Given a goal, the planner collects the informa-
tion about the current state of the house, e.g., available services and
their current states, through the context module, which may possibly
prefetch the data for better performance.

Synthesized plan is then given to the orchestration component (ex-
ecutor) which is responsible for a plan execution. It also includes
simple reasoning capabilities for simple failure recovery and service
instantiation. To execute a particular action, the orchestration compo-
nent finds one of the possible services that implements the desired
action. Some extra constraints may be associated in this case to reduce
possible instantiations. For example, alarm action may instantiate cor-
responding implementation which is close to the user, e.g., by showing
a message on TV screen if the user is watching it, or by invoking alarm
in the alarm clock if the user is sleeping in his bed.

User himself is represented as one of the services at the pervasive
layer. That is, whenever interaction with the user is needed according
to a plan, orchestration component simply invokes one of the services
that represent the user.

[September 1, 2011 at 15:32]

14 sm4all project

Figure 3: Planner within the system.

Figure 3 presents a general view of the system and a place and role
of the planner and orchestration engine in it.

3.1.0.3 Pervasive layer

Pervasive layer of the middleware is a physical layer of the system
which is represented by single logical component: Service Gateway.

Service Gateway is a component which lets physical devices to inter-
act with the other layers components by presenting the descriptors of
the embedded web services, executing service instances and working
as a specific middleware between user communication devices and the
platform, etc. The component can be viewed as an abstract wrapper
for all devices which are presented in house.

[September 1, 2011 at 15:32]

4
O R C H E S T R AT I O N M O D E L F O R T H E S M 4 A L L
P R O J E C T

The orchestrator is an independent component of the infrastructure of
the SM4ALL project. It is a module that receives the plans to execute
and decides on what to do in order to execute them in an efficient
way. Since the current state of the environment constantly changes,
and these changes may interfere with the process in execution, the
orchestrator should be able to receive feedback about the status of the
system to drive the execution of each invocation accordingly.

4.1 responsibilities

The main responsibility of an orchestrator is to execute of the incoming
plans and user commands. The devices are invoked when there is
a need in their performance. Every plan should be executed in an
efficient way. There could be many plans in a simultaneous execution.
Every user can have more than one plan in the process of execution
or many user can require to execute their plans at the same time.
Every plan is executed independently. However, there may be plans
which use the same resources from the same location. Therefore,
an orchestrator is responsible for checking whether the plans can
be executed together without intersection. If the plans share one or
more steps concerning different users, it is the responsibility of an
orchestration engine to resolve the conflict. Therefore, an orchestration
engine is responsible for:

• execution of the plans;

• effective execution of the user commands;

• simultaneous execution of the plans for the same or different
users;

• dealing with the conflicts concerning limited resources.

4.2 dependencies

An orchestrator engine is dependent from the following modules:

• Context Awareness;

• Repository;

• Planner;

15

[September 1, 2011 at 15:32]

16 orchestration model for the sm4all project

• Pervasive layer interface for the physical devices.

Context Awareness module, as it was described before, is the module
responsible for the constant monitoring of the Smart Home environ-
ment and updating the information about the changes in physical
devices, services, locations. This information is very important for
the orchestration engine, since the orchestrator needs to know the
current state of the environment in order to execute plans efficiently.
Repository contains the list of all resources which can be in use the
execution of plans. When the plan arrives, orchestrator should check
whether it is possible to execute the plan with the resources available
from the Repository. Since the list of the resources could be changed,
an orchestrator should communicate with the Repository for every
plan in motion. Planner is a module that creates plans to execute.
An orchestration engine needs plans from the planner to start their
execution. If the plan cannot be executed for some reason (for example,
if there are no resources available), an orchestrator notifies Planner
about an issue. In that case, the plan should be revised by Planner.
The Pervasive layer interface is needed for the retrieving the needed
physical devices, for the communication and controlling them. An or-
chestrator needs to send commands and receive the responses through
the special gateway for the physical devices.

4.3 formal orchestration model

The formal orchestration model provides the formal description of
the plans incoming from planner, the problems that an orchestrator is
facing and model of the orchestration engine.

4.3.0.4 Formal statements for the plans

Each action represents basic atomic operations that are supported by
the target environment. For example, in the context of smart homes,
some possible actions are turnOnLight, turnOffLight, pauseTv,

Definition 1 (Action). An action a is defined by a tuple 〈p, e〉, where

• p : D→ {>,⊥} is a precondition function that for each possible
global variable assignment it defines whether the action is applicable or
not.

• e : D→ D is an effect function, that for each global variable
assignment it defines a new value if the action is executed.

To distinguish between precondition and effect functions for different actions,
we write a.p and a.e to explicitly refer that p and e belong to action a.

Therefore, each action is described in terms of preconditions and
postconditions (effects).

[September 1, 2011 at 15:32]

4.3 formal orchestration model 17

Definition 2 (Planning Domain). Planning domain P is defined by a
tuple 〈V,A,d0〉, where:

• V = {v1, . . . , vn} is a set of variables over arbitrary domains
D = D0 × . . .×Dn;

• A is a set of actions;

• d0 ∈ D is an initial state (variable assignment, or context).

Definition 3 (Plan). Plan π for a planning domain P is defined as a
sequence of actions a0, . . . ,an, such that ∀a ∈ π : a ∈ A. Plan is valid for
d ∈ D if :

• ∀i : ai.p(ai−1.e(ai−2.e(. . . a0.e(d)))) = >, that is, each action is
applicable at each step of the plan.

Plan π is valid for P if it is valid for the initial state d0 of P.

Definition 4 (Reduced Planning Domain). Reduced planning domain
with respect to a plan π is a tuple Pπ = 〈Vπ,Aπ,dπ〉, where

• a ∈ π⇔ a ∈ Aπ;

• if variable v is affected by plan π then it is in Vπ;

• dπ is a projection of d to Vπ.

Definition 5 (Independent Plans). Two plans π1 and π2 are
independent if their reduced planning domains do not overlap, that is:

• Vπ1 ∩Vπ2 = ∅.

Otherwise, plans are non-independent.

Definition 6 (Instantaneous Plan). A plan π of length n is fast iff
∀i = 0..n− 1 : ai is instantaneous.

Note that the last action of an instantaneous plan is not required
to be instantaneous by itself. That also mean, that each plan may be
represented as a sequence of one or more chunks of instantaneous
plans.

4.3.0.5 Orchestration process model

The main purpose of an orchestrator is to control the execution of
the plans incoming from Planner using the information from the
Repository module. Therefore, the main problem is to execute many
plans in parallel. The plans that are overlapping by using the same
resources should be synchronized.

Definition 7 (Plan Synchronization Problem). A problem of merging
two non-independent instantaneous plans π1 and π2 is to find a tuple〈
π∗1,π∗2

〉
, such that:

[September 1, 2011 at 15:32]

18 orchestration model for the sm4all project

• all common ordered sub-sequence of actions are represented only once
in either of the plans;

• all critical sections are properly guarded;

• the plans are deadlock free, that is for any possible execution of plans,
it will always be no deadlock.

There are many plans concurrently in execution that are synchro-
nized. When the new plan arrives, it should also be synchronized with
the others.

Definition 8 (New Synchronization Problem). Given a merged
structure π1, to merge a new plan π2 into the structure means to find a
tuple

〈
π∗1,π∗2

〉
, such that:

• all common ordered sub-sequence of actions are represented only once
among the plans;

• all critical sections are properly guarded;

• the plans are deadlock free, that is for any possible execution of plans,
it will always be no deadlock.

It is assumed that there is a special layer between the orchestrator
and the planner which transforms plans according to the needs of
the orchestration engine. It converts all plans into the list of Activities
since the orchestrator operates the plans in such terms. Every Activity
possesses the list of the resources that are needed to complete the
task. A term Process is interchangeable with the term Plan, but it is
considered to be Activity.

case class Process(main: Activity) extends EmbeddedActivity(main)

Activity can be:

• Structured;

• Embedded;

• represented by one Invoke procedure.

case class Resource(name: String)

override def toString = name

abstract class Activity

def supervisedResources: List[Resource] = List.empty[Resource]

Definition 9 (Structured Activity). Structured Activity is an Activity
in form of Sequence or Flow.

[September 1, 2011 at 15:32]

4.3 formal orchestration model 19

abstract class StructuredActivity(val list: List[Activity])

extends Activity

override def supervisedResources = list.flatMap(_.supervisedResources)

Definition 10 (Sequence Activity). Sequence Activity is represented by
the flat Map of the Activities with the resources attached to them.

abstract class EmbeddedActivity(val activity: Activity)

extends StructuredActivity(List(activity))

Definition 11 (Flow Activity). Flow Activity is a list of Activities in a
form of a tree.

abstract class EmbeddedActivity(val activity: Activity)

extends StructuredActivity(List(activity))

Definition 12 (Embedded Activity). Embedded Activity is the Activity
that is nested within the other Activity.

abstract class EmbeddedActivity(val activity: Activity)

extends StructuredActivity(List(activity))

The example of the Embedded Activity is a Loop Activity within
which many Activities can be nested.

Definition 13 (Loop Activity). Loop Activity is an Activity that repeats
specified number of times and can contain the other Activities inside itself.

case class Loop(times: Int, loopActivity: Activity)

extends EmbeddedActivity(loopActivity)

Definition 14 (Invoke). Invoke Activity represents a single domain
operation.

case class Invoke(name: String) extends Activity

There are some special types of Activities:

Definition 15 (Empty Activity). Empty Activity represents the Activity
that does nothing.

case object Empty extends Activity

Definition 16 (Terminate Activity). Terminate Activity is an Activity
that allows to terminate currently running process.

case object Terminate extends Activity

Definition 17 (Critical Section). Critical section is a special type of
Activity that is formed by the intermediary layer in case when at least one
type of the resource needed to complete a task is limited in number. A special
Software Transactional Memory from the Akka library [10] is used for the
execution of the Critical section.

[September 1, 2011 at 15:32]

20 orchestration model for the sm4all project

case class CriticalSection(resources: List[Resource], cs: Activity)

extends EmbeddedActivity(cs)

override def supervisedResources = resources ++ futureResources

def futureResources = cs.supervisedResources

[September 1, 2011 at 15:32]

5
O R C H E S T R AT O R I M P L E M E N TAT I O N

The orchestrator is implemented in Scala programming language, and
by using the IDEA Intelligence framework and Maven tool. Orches-
trator is a part of the SM4ALL middleware which is responsible for
the proper execution of user commands. It is a part of the composi-
tion layer of the system. It represents a component that provides an
execution of the plans incoming from planner using the Repository as
a reference.

5.1 event-based actor scheme

Event-driven programming or event-based programming is a program-
ming paradigm in which the flow of the program is determined by
events–i.e., sensor outputs or user actions (mouse clicks, key presses)
or messages from other programs or threads[25].

Event-driven programming could be a good choice for the envi-
ronment such as Smart Homes where there are many heterogeneous
devices producing the events which should be dealt with.

A special library is elaborated for the communication between
the different actors within one cluster of servers for Scala and Java
languages. It is Akka project[10]. Akka is chosen as one of the basic
libraries for the project because it represents the platform for the
next generation event-driven, scalable and fault-tolerant architectures
based on the JVM (Java Virtual Machine). It provides Actor Model
together with Software Transactional Memory what raises the level of
abstraction and provides a better platform to build correct concurrent
and scalable applications.

Actor in Akka is an abstraction that helps the developer not to deal
with the explicit locking and thread management, making it easier
to write correct concurrent and parallel systems. Usage of Actors
provides an asynchronous, non-blocking and highly performant event-
driven programming model.

Software Transactional Memory allows to have a transactional
dataset with begin/commit/rollback semantics. It is very important
for the application since it helps to share the data structures across
actors. For example, for the counter of the processes currently at
execution it is indispensable.

There are different policies for the sending the messages from one
Actor to another. According to the Akka documentation, the messages
are sent to an Actor through one of the ’send’ methods. ’Tell’ means
“fire-and-forget”, e.g. send a message asynchronously and return im-

21

[September 1, 2011 at 15:32]

22 orchestrator implementation

mediately. ’SendRequestReply’ means “send-and-reply-eventually”,
e.g. send a message asynchronously and wait for a reply through a
Future. Here a timeout may be specified. This method throws an ’Ac-
torTimeoutException’ if the call timed out. ’SendRequestReplyFuture’
sends a message asynchronously and returns a ’Future’[11]. Therefore,
for various purposes one can choose different policies which would
be more adequate to the situation. For the purposes of the concurrent
execution within Smart Homes environment different policies were
chosen for different purposes. Where the reply is needed in order to
continue correct execution (i.e., the process needs a unique identifier
at the starting point), the “send-and-reply-eventually” variant is cho-
sen. When the reply is not so important, a “fire-and-forget” policy is
applied within the application.

Actors also provides the abstraction for transparent distribution and
the basis for truly scalable and fault-tolerant applications. Akka is
Open Source and available under the Apache 2 License.

Akka is chosen for the management of the concurrent execution
of the plans, high-level scalability of the solution and event-driven
approach since it provides all abstractions that are needed in order to
alleviate from the low-level controlling of the parallel schemes and it
is an Open Source project.

5.2 process model

The Process model describes the content of the plans in terms of or-
chestration engine needs. The complex plans that are received by the
Orchestrator from the Planner are converted into the list of Activities.
Every action of the plan is represented as an independent activity to
execute. Every Activity has a list of resources attached to it for the
correct execution of the step of the plan.

5.3 basic components

The basic components of the orchestrator are the process server con-
sisting of the Process Manager, Ticket Manager and Counter and Process
Model which was described in the previous subsection. Process server
side is responsible for the receiving the plans from the planner and
dealing with them. Process manager is responsible for the parsing and
executing the plans. Ticket manager is a special type of Actor which
holds the list of the available groups of the resources and provides the
processes with the permission to use the resources evading deadlock
problems and race conditions. Process model describes the possible
activities that could be executed. For more information, please, refer
to the subsection “Formal statements”.

Process server is started with the start of the whole SM4ALL middle-
ware. It works till the user shuts down the whole system. The server

[September 1, 2011 at 15:32]

5.3 basic components 23

is able to receive the messages containing plans, give them to the
process manager and send the activities containing in the plan to the
execution.

When the server starts, the special types of Actors are started as
well. The first type of an Actor is a Counter which issues the process
identifiers. Process for the further notes is counted as an interchange-
able word for the plan. The second type of an Actor is a Ticket Manager
which should know at the start if there are any processes to execute in
the system.

When the server stops, it closes all Actors dependable from it. The
code for the main functionality of server in Scala is following:

class ProcessServer

def start(): ActorRef =

val counter = actorOf[Counter].start()

val ticketManager = actorOf(new TicketManager(counter)).start()

actorOf(new ProcessManager(ticketManager, counter)).start()

def stop()

Thread.sleep(2000)

registry.shutdownAll()

Every process should receive the identifier in order to be executable.
It is done because the server needs to know the identity of every
process in execution for managing the resources and security reasons.
To give the identifier to every process a special type of Actor is used
which is Counter. For the purpose of the project it is implemented
as just the increment of the non-negative integers. However, for the
security reasons it can be easily expanded to the more complicated
scheme.

When the Counter receives the request for identifier through the
special Counter message, it increments the counter and replies with
the new counter:

case object CounterMessage

class Counter extends Actor

var counter: Long = 0;

def receive =

case CounterMessage =>

counter = counter + 1

self.reply(counter)

When server receives the plan from the planner, the process is dealt
with by Process manager part of the server. Every process is executed
independently.

[September 1, 2011 at 15:32]

24 orchestrator implementation

The Process manager needs the information about how to find Ticket
Manager and the Counter in order to execute process from its starting
point. Therefore, the references for the ticket manager and the counter
are given at the beginning of the system running.

For the easy monitoring of the system and controlling its behavior
the log is created where every step of the running orchestration system
is written.

The messages for the process manager could be of two different
types. The first type is a new plan to execute. The second type is
the request of counting how many processes are in execution at the
moment.

When the Process manager receives a message, it should check
whether this message contains a process or the process count request.
If the message contains a new plan to execute, the process manager
sends the message to the Counter in order to receive the new identifier
for the plan.

If the identifier is granted by Counter, the function execute is called
together with the incrementing the number of the processes in ex-
ecution. The incrementing of the processes in execution is done by
using atomic conditions to keep the count of processes always valid.
Atomic condition allows to change the value of the variable by only
one process at the moment. When the execution of the plan is finished,
the counter of the processes in execution is decremented by using
atomic condition.

If the identifier is not granted by Counter, a special message is
written to the log about the stopping of the execution of the process
because of the failed returning of the process identifier.

In the case when the message received by the process manager
contains the request for the counting the plans currently in execution,
it replies with the requested counter.

case class ProcessContext(processId: String)

case object ProcessCount

class ProcessManager(val ticketManager: ActorRef,

val counter: ActorRef)

extends Actor

val log = LoggerFactory.getLogger(classOf[ProcessManager])

val ref = Ref(0)

def receive =

case Process(main) =>

counter !! CounterMessage match

case Some(processId) =>

spawn

atomic

ref alter (_ + 1)

[September 1, 2011 at 15:32]

5.3 basic components 25

execute(ProcessContext(processId.toString), main)

atomic

ref alter (_ - 1)

case x => log.error("Counter failed to return processId ,

process stopped!", x)

case ProcessCount =>

self.reply(atomic

ref.get

)

The execution of every plan is performed by calling the function
execute which is originally the part of the Process Manager. The process
context containing the general information over the process (including
process identifier) and a plan itself as a list of Activities is passed to
the function for the execution.

As it was described previously in Process model section, Activity
may contain many Activities in itself as a Sequence, Flow or the
Loop. The function execute in the case of receiving the Sequence or
the Flow of Activities for each item containing in the list invokes
itself recursively. That means that at the end every plan consists of
the sequential ordered list of invocations of single Activities. In the
case of receiving the Loop Activity, the function execute invokes itself
recursively as many times as it is needed.

If the function execute receives the call for the single Activity, the
case Invoke is chosen. At the beginning of the execution the message
reporting the start of the Activity is written to the log. After that the
Activity is executed. At the end of the execution the reporting message
about finishing the execution is written to a log.

A special case is a Critical section occurrence. A Critical section is as-
signed for dealing with the limited resources groups. Some resources
involve short type of action and they can be triggered at any moment
as many times as user wants. The action following the last user com-
mand would be taken into consideration in this case. The example of
such activity could be turn on/ turn off the lamp. It does not matter
how many times the activity is performed. The result will be the last
user command. However, some resources could be limited in number
or even exclusive. The example of such resource could be the only
bathroom in the apartment. If one user occupied it, another user could
not go in there for some time. For such type of the resources a special
resolving solution should be procured.

The solution that is proposed concerns the exclusive or limited
resources. First, every process should acquire a special ticket from
the Ticket Manager as a permission to use a resource. If resource is

[September 1, 2011 at 15:32]

26 orchestrator implementation

available, the process receives the ticket and could proceed with the
execution. If the resource is not available, the process should wait
until the resource is available and then after a definite amount of time
to request the ticket again. For the concurrent execution without the
deadlocks a special scheme is running for the Ticket Manager which is
described in a section “The Scenarios and Orchestrator Running”.

In the case of the receiving the message that does not contain neither
Sequence, Flow, Loop, or Invoke, nor Critical Section, the message is
ignored and a warning is written to the log.

The code for the function execute demonstrates the procedure of the
executing of one plan:

def execute(ctx: ProcessContext, a: Activity): Unit = a match

case Sequence(list) => list foreach (execute(ctx, _))

case Flow(list) => list foreach (execute(ctx, _))

case Loop(times, activity) =>

if (times > 0)

execute(ctx, activity)

execute(ctx, Loop(times - 1, activity))

case Invoke(name) =>

log.info(ctx.processId + ": Invoke started: ", name)

Thread.sleep(3000)

log.info(ctx.processId + ": Invoke finished: ", name)

case cs: CriticalSection =>

// get ticket

ticketManager !! GetTicket(ctx.processId, cs.resources,

cs.futureResources) match

case Some(Ticket(id)) =>

execute(ctx, cs.cs);

// release ticket

ticketManager ! ReleaseTicket(ctx.processId, id,

cs.resources)

case Some(TicketNotAvailable(reason)) =>

log.debug(ctx.processId +

": Conflict: while asking for ",

reason, cs.resources)

// wait and retry

Thread.sleep(1000)

execute(ctx, cs)

case x => log.error("Unexpected message received

from TicketManager: ", x)

case x => log.error("Unknown process element,

ignoring: ", x)

For dealing with the tickets for the limited resources a special Ticket
Manager is developed. Ticket Manager is a special Actor within the
system. There is only one Ticket Manager for the whole orchestration
engine. However, regards the results of testing it is not a bottleneck
for the system. For more information about the testing evaluation it is

[September 1, 2011 at 15:32]

5.3 basic components 27

recommended to refer to the Chapter “Testing and Evaluation of the
Solution”.

When starting, Ticket Manager launches the log and two Map struc-
tures. One Map structure is responsible for the storage of data about
the processes to which the tickets for the resources are given. The
other Map structure is responsible for the data storage of the resources
to which the tickets are presented.

Ticket Manager is able to receive messages and to respond on them.
The types of messages it may receive are:

• request to get ticket for the limited type or the resource;

• request for release of the ticket for the limited type of resource;

• all other messages are marked as unknown and are not parsed.

When Ticket Manager receives the request for getting the ticket for
the limited resource, it, at first, checks whether the ticket is allowed
to be issued. It checks the availability of the resource by looking
through the Map “Resource - Ticket”. If there are no anymore resources
of the requested type, it sends the message to the process-sender
that the ticket is unavailable. If the resource is still available, Ticket
manager checks dependencies for the variables representing future
resources. Future resource notion is provided as by checking future
resources needs of the process comparing it with the other processes
concurrently in execution it is possible to avoid cyclic dependencies. If
the future resources contain some resources that are already in use,
the ticket is not issued. Otherwise, the ticket is granted.

In case of the receiving message containing the request to release
ticket it removes ticket note from both Map structures, unlocks all
resources that are mentioned in message and sends a notification that
ticket is successfully removed.

abstract class TicketMessage

case class Ticket(ticketId: String) extends TicketMessage

case class TicketNotAvailable(reason: String) extends TicketMessage

case class GetTicket(processId: String, resources: List[Resource],

future: List[Resource]) extends TicketMessage

case class ReleaseTicket(processId: String, ticketId: String,

resources: List[Resource])

extends TicketMessage

class TicketManager(val counter: ActorRef) extends Actor

val log = LoggerFactory.getLogger(classOf[TicketManager])

var tickets = Map[Ticket, String]()

var res_tickets = Map[Resource, Ticket]()

def receive =

[September 1, 2011 at 15:32]

28 orchestrator implementation

case GetTicket(processId, resources, future) =>

// check if ticket has to be issued:

// 1. check if the resource has already been taken

if (resources exists(r => res_tickets.contains(r)))

self.reply(TicketNotAvailable("One of the

requested resources is locked: " + resources))

// 2. check if the process future depends on locked vars

//this condition is actually a bit strong: we only care

//if it leads to cyclic dependencies

else if (future exists(r => res_tickets.contains(r)))

self.reply(TicketNotAvailable("My future resources

are locked: " + future))

else

// issue ticket

self.reply(issueTicket(processId, resources, future))

case ReleaseTicket(processId, ticketId, resources) =>

// 1. remove from tickets

tickets -= Ticket(ticketId)

// 2. unlock resources

resources foreach (r => res_tickets -= r)

log.debug(processId + ": Ticket released: ", ticketId)

log.trace(processId + ": TICKETS: ", tickets)

log.trace(processId + ": RES_TIC: ", res_tickets)

case x => log.info("Received unknown message: .

Ignoring it!", x);

def issueTicket(processId: String, resources: List[Resource],

future: List[Resource]):

Ticket = counter !! CounterMessage match

case Some(ticketId) =>

val ticket = Ticket(ticketId.toString)

// 1. keep the process id for each ticket

tickets += ticket -> processId

// 2. for each resource add ticket that keeps it locked,

//consider exclusive resources first

resources foreach (r => res_tickets += r -> ticket)

log.debug(processId + ": Ticket issued: for ",

ticket, resources)

log.trace(processId + ": TICKETS: ", tickets)

log.trace(processId + ": RES_TIC: ", res_tickets)

return ticket

case None => throw new IllegalStateException

("Unknown response from counter,

cannot issue a ticket!")

Ticket((counter !! CounterMessage get).toString)

[September 1, 2011 at 15:32]

5.4 communication with environment 29

The process of issuing ticket is performed by adding to the Map
structure “Ticket - Process identifier” a needed information and by
mapping the resource to the ticket in other Map structure. At the end
of the process a notification is sent to the sender with the response to
the request.

5.4 communication with environment

Communication of an orchestrator with the environment could be
performed in different ways. Since the orchestrator is an independent
module of the middleware working as a “black box”, every possible
solution may be chosen in order to connect to other modules. It could
use the HTTP protocol and TCP/IP stack. There is a possibility to
use the web services protocols of communication, would it be SOAP
messages[24] or REST interface of services[14].

The other possible solution is to use JSON library[17]. JSON (JavaScript
Object Notation) is a lightweight data-interchange format. JSON is a
text format that is completely language independent but uses conven-
tions that are familiar to programmers of the C-family of languages,
including C, C++, Java, JavaScript, Perl, Python, and many others.
These properties make JSON an ideal data-interchange language.

Everyone could choose which protocol he/she likes to use for an
orchestrator communication with the other modules or even directly
with the outside environment as well in cases when it is needed.

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

6
T H E S C E N A R I O S A N D O R C H E S T R AT O R R U N N I N G

After that, the context is going to be extracted from the middleware
platform, and is put into the repository for the orchestrator. All avail-
able devices are contained there in order to know for the orchestrator
whether they are available or not. If the resources are exclusive (means
- unique) and not available - they are in use by one of the users at the
house, and others should wait for it.

While the orchestrator runs, it may execute many plans simultane-
ously. Every plan is executed independently. A special Actor is created
to deal with every plan. The plans incoming from the Planner module
are usually quite complex. The structure of such plans consists of
many steps, or in terms of the orchestrator - Activities. Every Activity
may need to lock the resources in order to successfully complete the
stage. Some of the resources are limited. Therefore, it could be impos-
sible to lock the unique resource, if it is already in use by some other
process.

The solution is developed in a way to provide deadlock-free execu-
tion without race conditions of all processes. Every process is able to
achieve the final goal if it is executed by using the proposed orchestra-
tion model. Such successful concurrent execution is provided by using
the ‘Ticket Manager Actor.

For the limited resources groups it is possible to have different
scenarios regarding whether some processes needs to lock the same
resource or not. For the simplicity it is assumed that all plans are
began to be executed at the same point of time.

The first scenario demonstrates the situation where every process
needs to lock different limited resources, as it is demonstrated at
Figure 4. In this scenario there are no overlapping plans. The execution
of every plan proceeds smoothly without any problems. Every plan
can lock the resources it needs for the completing the task.

The second scenario provides an overlook for the situation where
the first plan needs the unique resource of the type a, the second
plan needs the same resource a and after that - resource b, and the
third plan needs resource of type c as it is shown at Figure 5. For
such type of scenario there are two possible developments. First of
all, the third plan does not overlap with any other plan. It is executed
independently. However, the first and second plans are in need of the
same unique resource a.

The first possibility of further development is where the first plan is
successful in obtaining the ticket for the resource a. In this case the
Actor responsible for the execution of the second plan waits for the

31

[September 1, 2011 at 15:32]

32 the scenarios and orchestrator running

Figure 4: Execution of the plans locking independent resources.

release of ticket from the first plan. The resource b is considered to
be the future resource, however, the ticket for it cannot be obtained
because the plan is the sequence of actions where step 1 should be
completed before step 2. When the first plan releases the resource a,
second plan obtains the ticket for that resource and can continue exe-
cution without any problems. After completing the first step, second
plan requests for the ticket for the resource of type b and receives it
without any problem.

The second possibility of the situation development is where the
second plan obtains the ticket for the unique resource a. In this case
first plan should wait the release of the ticket for that resource. After
obtaining the ticket for the resource a first plan could be executed till
it achieves the final goal.

The third scenario demonstrates the situation where the first plan
needs the unique resource of the type a and after that - resource
b, the second plan needs the resource b and after that - again the
resource b, and the third plan needs resource of type c as it is shown
at Figure 6. The third plan again does not overlap with any other plan.
It is executed independently. However, the first and second plans are
in need of the same unique resource b. There two possible scenarios
for this type of situation.

First plan needs to lock the unique resource of type a for the com-
pleting the first step. Second plan needs the unique resource of type
b at the same time for the first step. Both plans are successful in
obtaining the ticket for the execution of the first steps.

[September 1, 2011 at 15:32]

the scenarios and orchestrator running 33

Figure 5: Execution of the plans locking one type of the unique resource.

After the completing of the first step every plan is in need for the
resource b. The ticket for the resource b should be released by the plan
after finishing the step. Therefore, the situation can develop in two
ways. A new ticket for the unique resource b should be requested by
both plans. One of them obtains the ticket (in FIFO mode), the other
should wait until the releasing of the ticket for the resource. After that,
the ticket could be successfully received by the remaining plan. Such
solution is developed in order to avoid the possible starvation of the
processes.

Forth scenario deals with the case where two of three plans are in
need to lock the same resources, but the order of the lock is reversed.
That means that first plan needs the resource of type a and then - b,
and the second plan needs at first resource b and after that - a, as it
is shown at the Figure 7. The third plan again does not overlap with
any other plan. It is executed independently. However, the first and
second plans are in need of the same unique resources a and b for the
same step, but for two different critical sections.

In this case there could be a problem of the deadlock between the
two processes. For that reason a special notion of future resources is
introduced. Ticket manager saves the information for the every process
not only about the resources the process needs at this point of time,
but also about the resources that the process will need in the nearest
future to complete the task.

Therefore, let us assume that the first process is the first to obtain
the ticket for the resource of type a, and is subscribed for the resource
of type b as a future resource. The Ticket Manager receives the request

[September 1, 2011 at 15:32]

34 the scenarios and orchestrator running

Figure 6: Execution of the plans locking the same type of the unique resource
for step 2.

for the resource b from the second plan as a needed resource and
for the resource a as a future resource. Ticket Manager check all
plans already in execution for the availability of the resources. It
finds that the resource a is requested by the first plan and it is not
available. Furthermore, resource b is needed in future for the first plan
to complete the task. In this case second plan is not able to obtain
neither of the resources. It should wait the release of the ticket for the
resource a to subscribe to it as a future resource, and the release of the
ticket for the resource b to continue execution.

[September 1, 2011 at 15:32]

the scenarios and orchestrator running 35

Figure 7: Execution of the plans locking the unique resources in reversed
order.

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

7
T E S T I N G A N D E VA L U AT I O N O F T H E S O L U T I O N

To check the feasibility and correctness of the solution the special tests
are needed to be elaborated and executed. Moreover, it is possible
to check the scalability and the percentage of usage of CPU. The
tests were conducted to control the behavior of the system and to
check different parameters in order to demonstrate high quality of the
proposed solution.

7.1 critical section test

The Critical section is the most important point of the system. If it
performs well, that means that the application works correctly.

A critical section test contains the execution of two different plans.
First plan is executed two times (as a Loop Activity), and it needs
to lock the unique resource x, then - y, after that - z. Every request
for the resource is made out to be a Critical section. Second plan is
also executed two times (as a Loop Activity), and it needs to lock
the unique resource p, then - z, after that - y. The main objective of
the test is to demonstrate that all processes accomplished their tasks
successfully. That means that at the end there should be zero processes
currently in execution.

class CriticalSectionTest extends SpecificationWithJUnit

"ProcessServer" should

"execute all processes without deadlocks" in

val ps = new ProcessServer().start()

val x = List(Resource("x"))

val y = List(Resource("y"))

val z = List(Resource("z"))

val p = List(Resource("p"))

val cs_1 = new Process(Loop(2,

new CS(x,

new CS(y,

new CS(z,

new Invoke("Invoke 1"))))))

val cs_2 = new Process(Loop(2,

new CS(p,

new CS(z,

new CS(y,

new Invoke("Invoke 2"))))))

ps ! cs_1

ps ! cs_2

37

[September 1, 2011 at 15:32]

38 testing and evaluation of the solution

val res = wait(ps)

ps.stop()

res must_== 0

@tailrec final def wait(ps: ActorRef): Int =

Thread.sleep(1000)

(ps !! ProcessCount) match

case Some(x) => if (x != 0) wait(ps) else 0

case None => 0

Test has been run over 20 times and every time it was finished suc-
cessfully. The log of the console output is provided in the Appendix
A.

7.2 dining philosophers test

The dining philosophers is one of the famous problems in the field of
concurrent execution of the processes. The problem statement for the
dining philosophers from Wikipedia [26] is the following: Five silent
philosophers sit at a table around a bowl of spaghetti. A fork is placed
between each pair of adjacent philosophers.

Each philosopher must alternately think and eat. Eating is not
limited by the amount of spaghetti left: assume an infinite supply.
However, a philosopher can only eat while holding both the fork to
the left and the fork to the right (an alternative problem formulation
uses rice and chopsticks instead of spaghetti and forks).

Each philosopher can pick up an adjacent fork, when available, and
put it down, when holding it. These are separate actions: forks must
be picked up and put down one by one.

The problem is how to design a discipline of behavior (a concurrent
algorithm) such that each philosopher won’t starve, i.e. can forever
continue to alternate between eating and thinking.

This problem is often used to check the deadlock-free execution of
the systems. For this reason it was chosen to check the correctness of
the concurrent algorithm. There are two slightly different tests were
elaborated for the dining philosophers problem:

• where the philosopher claims two forks simultaneously to eat;

• where the philosopher claims one fork at a time and can wait
for another.

[September 1, 2011 at 15:32]

7.2 dining philosophers test 39

For the first test the ultimate goal is to feed to philosophers three times.
Every philosopher should be able to complete the task successfully by
the end of the test.

class PhilosophersTest extends SpecificationWithJUnit

"ProcessServer" should

"feed all philosophers 3 times" in

val ps = new ProcessServer().start()

val p_1 = List(Resource("f1"), Resource("f2"))

val p_2 = List(Resource("f2"), Resource("f3"))

val p_3 = List(Resource("f3"), Resource("f4"))

val p_4 = List(Resource("f4"), Resource("f5"))

val p_5 = List(Resource("f5"), Resource("f1"))

val cs_1 = new Process(Loop(3,

new CS(p_1,

new Invoke("P1 eats"))))

val cs_2 = new Process(Loop(3,

new CS(p_2,

new Invoke("P2 eats"))))

val cs_3 = new Process(Loop(3,

new CS(p_3,

new Invoke("P3 eats"))))

val cs_4 = new Process(Loop(3,

new CS(p_4,

new Invoke("P4 eats"))))

val cs_5 = new Process(Loop(3,

new CS(p_5,

new Invoke("P5 eats"))))

ps ! cs_1

ps ! cs_2

ps ! cs_3

ps ! cs_4

ps ! cs_5

val res = wait(ps)

ps.stop()

res must_== 0

@tailrec final def wait(ps: ActorRef): Int =

Thread.sleep(1000)

(ps !! ProcessCount) match

case Some(x) => if (x != 0) wait(ps) else 0

case None => 0

[September 1, 2011 at 15:32]

40 testing and evaluation of the solution

The test was executed over 30 times and demonstrated that the solution
is correct for such type of the problem. The output on the debugging
console of the test could be found in Appendix B.

For the second test the ultimate goal is to feed to philosophers
two times. While one fork could be claimed, the other one should
be claimed as future resource. Every philosopher should be able to
complete the task successfully by the end of the test.

class TruePhilosophersTest extends SpecificationWithJUnit

"ProcessServer" should

"feed real philosophers 2 times" in

val prs = new ProcessServer().start()

val f_1 = List(Resource("f1"))

val f_2 = List(Resource("f2"))

val f_3 = List(Resource("f3"))

val f_4 = List(Resource("f4"))

val f_5 = List(Resource("f5"))

val phil_1 = Process(Loop(2, CriticalSection(f_1,

CriticalSection(f_2, Invoke("Phil_1 eats")))))

val phil_2 = Process(Loop(2, CriticalSection(f_2,

CriticalSection(f_3, Invoke("Phil_2 eats")))))

val phil_3 = Process(Loop(2, CriticalSection(f_3,

CriticalSection(f_4, Invoke("Phil_3 eats")))))

val phil_4 = Process(Loop(2, CriticalSection(f_4,

CriticalSection(f_5, Invoke("Phil_4 eats")))))

val phil_5 = Process(Loop(2, CriticalSection(f_5,

CriticalSection(f_1, Invoke("Phil_5 eats")))))

prs ! phil_1

prs ! phil_2

prs ! phil_3

prs ! phil_4

prs ! phil_5

val rs = wait(prs)

prs.stop()

rs must_== 0

@tailrec final def wait(prs: ActorRef): Int =

Thread.sleep(1000)

(prs !! ProcessCount) match

case Some(x) => if (x != 0) wait(prs) else 0

case None => 0

[September 1, 2011 at 15:32]

7.3 the evaluation of the solution 41

The test was executed over 30 times and demonstrated that the solution
is correct for such type of the problem. The output on the debugging
console of the test could be found in Appendix C.

7.3 the evaluation of the solution

While running the tests and scenarios, the system behavior could be
checked using different metrics in various situations.

One of the main issues for the distributed systems is always high
level of performance. In software architecture practice, performance
testing is such kind of testing that is done to determine how fast some
aspect of a system performs under a particular workload. It can also
serve as a checkpoint for the verification and validation of the other
quality attributes of the system, such as scalability, reliability and
resource usage.

The tests chosen for the demonstration of the high performance
level capability of the system include the metrics:

• the number of processes in execution simultaneously;

• the maximum number of conflicts for the lock of the limited
resources in the process of execution;

• the maximum number of concurrent lock conflicts;

• the load of CPU while processing the tests;

• the amount of the computer memory involved;

• the time of the running the tests.

Firstly, the experimental testing has been conducted to check how
many conflicts appeared at maximum while executing the test for
the dining philosophers problem depending on the number of the
processes concurrently in execution. The number of working threads
for the different number of processes has been limited to different
numbers for the tests. As one of the examples, for the execution of 70

processes the limit of 16 concurrent execution threads is chosen, etc.
The results are presented in Table 1. In the graphical representation

Processes 70 140 210 280 350 420 490 560 630 700 770

16 WT 94 176 250 322 399 461 551 622 694 779 844

128 WT 790 2797 3198 3795 4212 4572 4968 5764 6052 6354 6943

1024 WT 794 3231 7321 13060 20450 29491 40180 50774 64139 78087 92025

Table 1: Maximum number of conflicts depending on the number of working
threads.

shown at the Figure 8 it is obvious that the limit of the simultaneously
working threads should not be equal to the number of processes.

[September 1, 2011 at 15:32]

42 testing and evaluation of the solution

When there are a big number of processes in execution, the maximum
number of locks conflicts increases practically exponentially. At the
same time with the reasonable limit for working threads it is possible
to achieve a good performance from the system. The next experiment

Figure 8: Maximum number of conflicts depending on the number of work-
ing threads.

is based on the number of working threads and it calculates the
maximum amount of simultaneous locks. The results are presented in
the Table 2.

Processes 70 140 210 280 350 420 490 560 630 700 770

16 WT 16 16 16 16 16 16 16 16 16 16 16

128 WT 67 128 128 128 128 128 128 128 128 128 128

1024 WT 67 137 207 277 347 417 487 556 626 696 766

Table 2: Maximum number of the concurrent conflicts depending on the
number of working threads.

The chart at Figure 9 shows that for such amount of concurrent
working threads it takes almost all permitted slots. However, there
is a slight trend for the increasing amount of working threads to
expect bigger deviation from the linear increase for the decreasing the
number of slots. Such big amount of concurrent working threads is not
what we could expect for Smart Homes environment. However, for
the big Smart Offices buildings this metric could be quite interesting.

The next experiment represents the persentage of the CPU use
regards the number of concurrent working threads. The results are
provided in Table 3. The results of the testing processor use are quite
interesting. At the chart 10 a jump could be seen at the beginning of
the execution. It is expectable since the program starts to run and it
needs initialize all variables in the environment. By the end of the

[September 1, 2011 at 15:32]

7.3 the evaluation of the solution 43

Figure 9: Maximum number of locks conflicts depending on the number of
working threads.

Processes 70 140 210 280 350 420 490 560 630 700 770

16 WT 0.273 0.17 0.117 0.09 0.195 0.184 0.068 0.05 0.008 0.007 0.006

128 WT 0.165 0.065 0.142 0.04 0.032 0.067 0.018 0.021 0.036 0.024 0.024

1024 WT 0.125 0.09 0.118 0.019 0.037 0.036 0.016 0.015 0.013 0.02 0.028

Table 3: Maximum number of the concurrent conflicts depending on the
number of working threads (in %).

execution it becomes more and more decreasing. It is the result that
you could expect from the system of high quality of performance.

The check of processor use can be confirmed by demonstrating CPU
use through Windows control panel. The check is done on the laptop
with the 8 processor cores and demonstrated at the Figure 11.

Next testing experiment helps to calculate how much virtual mem-
ory (in MB) is used in total to finish the execution of all processes. The
results are presented in Table 4. The chart 12 demonstrates that the

Processes 70 140 210 280 350 420 490 560 630 700 770

16 WT 24 2.7 1.4 3 3.7 4.1 8.2 11.7 8.2 11.5 1

128 WT 1 10.2 5.9 9.3 14.9 10.9 15.8 17 6.8 20.1 22.2

1024 WT 1 21.5 44.4 44.4 36.1 44.7 39.6 17.6 30.4 14.6 18.6

Table 4: Total memory used depending on the number of working threads.

big number of threads leads to the overload of the virtual memory in
use by the program. Therefore, it is necessary to decide on rather low
number of threads if the memory is critical for the execution.

The last experiment shows the total time of an execution (in sec)
of concurrent plans depending on the limiting number of the concur-
rent threads. The results are demonstrated in Table 5. The chart 13

demonstrates that the big number of threads leads to the much longer

[September 1, 2011 at 15:32]

44 testing and evaluation of the solution

Figure 10: Percentage of CPU use depending on the number of working
threads.

Figure 11: Percentage of CPU use depending on the number of working
threads through Windows panel.

execution of the program. Even more, while having 1024 threads, there
are some drops shown, but in general the tendency concerning very
big number of threads is not good enough. Therefore, it is necessary
to decide on rather low number of concurrent threads if the time is
critical for the performance.

[September 1, 2011 at 15:32]

7.3 the evaluation of the solution 45

Figure 12: Total memory used for execution depending on the number of
working threads.

Processes 70 140 210 280 350 420 490 560 630 700 770

16 WT 5 8 10 13 16 17 20 23 25 28 41

128 WT 13 24 26 29 30 32 33 37 38 40 31

1024 WT 14 26 38 50 63 76 88 101 113 126 139

Table 5: Time of execution depending on the number of working threads.

Figure 13: Execution time depending on the number of concurrent threads.

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

8
C O N C L U S I O N S A N D D I S C U S S I O N S

Service-oriented computing is one of the emerging paradigms in com-
puter science and the world of software applications nowadays. It is
happened because modern software systems are often developed in
distributed manner. Every software program or application has its
own format and policy of use. Therefore, the problem of interaction
between the systems and heterogeneity of the field in general is arising
with the increasing of the number of different applications. Service-
oriented computing deals with the heterogeneity of devices, software
applications and system by introducing corresponding concepts and
technologies that cope with such class of problems. Service-oriented
computing concepts have been successfully applied in different areas,
including pervasive computing, mobile software, embedded devices.
Domotics is one of the complicated domains which is highly heteroge-
neous environment with a huge amount of the distributed physical
devices in use. Service-oriented programming has proved to be a
perfect solution to deal with the issues of Smart Homes. However, it
does not respond to the question how the services can be executed at
the same time in reliable manner

The presented work proposes a solution to the problem of con-
current execution of the complex scenarios within distributed higly
heterogeneous environments. The development of the software proto-
type demonstrated that finding a solution to this problem is definitely
feasible and can be done using modern technologies.

Ohe of the main advantages of the developed solution is always
to keep high levels of performance while executing the concurrent
plans. Even when the plans are overlapping in their needs for the
same resource and a critical section concept is used, it never takes
considerable amounts of time to continue the execution.

The other advantage of the chosen scheme is that it based on an
event-based Actor system which is light-weight distributed, highly
performing and very scalable solution. Every plan could be executed
within the heterogeneous distributed system by different Actor which
communicate with each other in order to coordinate their activities.

Testing results prove the system to be correct and reliable. Based
on the evaluation results and the consumed resources, it is obvious
that the solution can be used even in Embedded systems environment,
such as mobile applications. Moreover, the running prototype is a
general solution that can be taken in consideration not only for the
domotics domain, but it could be applied for the different distributed
systems.

47

[September 1, 2011 at 15:32]

48 conclusions and discussions

The proposed solution is a core of the orchestration engine for the
concurrent execution of complex scenarios. However, some issues are
still remaining out of scope of the presented work. For example, the
orchestration engine prototype can be easily expanded by developing
new features that facilitate the achievement of the higher level of
performance and correspond to the other system quality requirements.

One of the other future development is elaborating an interme-
diary layer between the Planner and Orchestrator modules able to
format plans incoming from Planner the way they are needed by the
orhcestration engine.

Moreover, the system needs not only concurrent execution of the
complex processes, but also a synergy solution for the situation when
different users use the resource together. An example of such situation
is a door opened for two users, and only when they both enter the next
room, the door closes. Another example is a table that could be shared
by a specific number of users simultaneously. These issues is beyond
of the scope of the presented work, however, it is very important to
have it in Smart Homes.

[September 1, 2011 at 15:32]

A
A P P E N D I X

TicketManager - 2: Ticket issued: Ticket(4) for List(x)

TicketManager - 2: TICKETS: Map(Ticket(4) -> 2)

TicketManager - 2: RES_TIC: Map(x -> Ticket(4))

TicketManager - 3: Ticket issued: Ticket(5) for List(p)

TicketManager - 3: TICKETS: Map(Ticket(4) -> 2, Ticket(5) -> 3)

TicketManager - 3: RES_TIC: Map(x -> Ticket(4), p -> Ticket(5))

TicketManager - 2: Ticket issued: Ticket(6) for List(y)

TicketManager - 2: TICKETS: Map(Ticket(4) -> 2, Ticket(5) -> 3,

Ticket(6) -> 2)

TicketManager - 2: RES_TIC: Map(x -> Ticket(4), p -> Ticket(5),

y -> Ticket(6))

ProcessManager - 3: Conflict: My future resources are locked:

List(y) while asking for List(z)

TicketManager - 2: Ticket issued: Ticket(7) for List(z)

TicketManager - 2: TICKETS: Map(Ticket(4) -> 2, Ticket(5) -> 3,

Ticket(6) -> 2, Ticket(7) -> 2)

TicketManager - 2: RES_TIC: Map(x -> Ticket(4), p -> Ticket(5),

y -> Ticket(6), z -> Ticket(7))

ProcessManager - 2: Invoke started: Invoke 1

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

ProcessManager - 2: Invoke finished: Invoke 1

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

TicketManager - 2: Ticket released: 7

TicketManager - 2: TICKETS: Map(Ticket(4) -> 2, Ticket(5) -> 3,

Ticket(6) -> 2)

TicketManager - 2: RES_TIC: Map(x -> Ticket(4), p -> Ticket(5),

y -> Ticket(6))

TicketManager - 2: Ticket released: 6

TicketManager - 2: TICKETS: Map(Ticket(4) -> 2, Ticket(5) -> 3)

TicketManager - 2: RES_TIC: Map(x -> Ticket(4), p -> Ticket(5))

TicketManager - 2: Ticket released: 4

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5))

TicketManager - 2: Ticket issued: Ticket(8) for List(x)

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3, Ticket(8) -> 2)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5), x -> Ticket(8))

TicketManager - 2: Ticket issued: Ticket(9) for List(y)

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3, Ticket(8) -> 2,

Ticket(9) -> 2)

49

[September 1, 2011 at 15:32]

50 appendix

TicketManager - 2: RES_TIC: Map(p -> Ticket(5), x -> Ticket(8),

y -> Ticket(9))

TicketManager - 2: Ticket issued: Ticket(10) for List(z)

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3, Ticket(8) -> 2,

Ticket(9) -> 2, Ticket(10) -> 2)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5), x -> Ticket(8),

y -> Ticket(9), z -> Ticket(10))

ProcessManager - 2: Invoke started: Invoke 1

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(z) while asking for List(z)

ProcessManager - 2: Invoke finished: Invoke 1

TicketManager - 2: Ticket released: 10

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3, Ticket(8) -> 2,

Ticket(9) -> 2)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5), x -> Ticket(8),

y -> Ticket(9))

TicketManager - 2: Ticket released: 9

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3, Ticket(8) -> 2)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5), x -> Ticket(8))

TicketManager - 2: Ticket released: 8

TicketManager - 2: TICKETS: Map(Ticket(5) -> 3)

TicketManager - 2: RES_TIC: Map(p -> Ticket(5))

TicketManager - 3: Ticket issued: Ticket(11) for List(z)

TicketManager - 3: TICKETS: Map(Ticket(5) -> 3, Ticket(11) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(5), z -> Ticket(11))

TicketManager - 3: Ticket issued: Ticket(12) for List(y)

TicketManager - 3: TICKETS: Map(Ticket(5) -> 3, Ticket(11) -> 3,

Ticket(12) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(5), z -> Ticket(11),

y -> Ticket(12))

ProcessManager - 3: Invoke started: Invoke 2

ProcessManager - 3: Invoke finished: Invoke 2

TicketManager - 3: Ticket released: 12

TicketManager - 3: TICKETS: Map(Ticket(5) -> 3, Ticket(11) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(5), z -> Ticket(11))

TicketManager - 3: Ticket released: 11

TicketManager - 3: TICKETS: Map(Ticket(5) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(5))

TicketManager - 3: Ticket released: 5

TicketManager - 3: TICKETS: Map()

TicketManager - 3: RES_TIC: Map()

TicketManager - 3: Ticket issued: Ticket(13) for List(p)

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(13))

TicketManager - 3: Ticket issued: Ticket(14) for List(z)

[September 1, 2011 at 15:32]

appendix 51

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3, Ticket(14) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(13), z -> Ticket(14))

TicketManager - 3: Ticket issued: Ticket(15) for List(y)

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3, Ticket(14) -> 3,

Ticket(15) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(13), z -> Ticket(14),

y -> Ticket(15))

ProcessManager - 3: Invoke started: Invoke 2

ProcessManager - 3: Invoke finished: Invoke 2

TicketManager - 3: Ticket released: 15

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3, Ticket(14) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(13), z -> Ticket(14))

TicketManager - 3: Ticket released: 14

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3)

TicketManager - 3: RES_TIC: Map(p -> Ticket(13))

TicketManager - 3: Ticket released: 13

TicketManager - 3: TICKETS: Map()

TicketManager - 3: RES_TIC: Map()

Process finished with exit code 0

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

B
A P P E N D I X

TicketManager - 2: Ticket issued: Ticket(7) for List(f1, f2)

TicketManager - 2: TICKETS: Map(Ticket(7) -> 2)

TicketManager - 2: RES_TIC: Map(f1 -> Ticket(7), f2 -> Ticket(7))

ProcessManager - 2: Invoke started: P1 eats

TicketManager - 5: Ticket issued: Ticket(8) for List(f4, f5)

TicketManager - 5: TICKETS: Map(Ticket(7) -> 2, Ticket(8) -> 5)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(7), f2 -> Ticket(7),

f4 -> Ticket(8), f5 -> Ticket(8))

ProcessManager - 5: Invoke started: P4 eats

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 2: Invoke finished: P1 eats

TicketManager - 2: Ticket released: 7

TicketManager - 2: TICKETS: Map(Ticket(8) -> 5)

TicketManager - 2: RES_TIC: Map(f4 -> Ticket(8), f5 -> Ticket(8))

ProcessManager - 5: Invoke finished: P4 eats

TicketManager - 2: Ticket issued: Ticket(9) for List(f1, f2)

TicketManager - 2: TICKETS: Map(Ticket(8) -> 5, Ticket(9) -> 2)

TicketManager - 2: RES_TIC: Map(f4 -> Ticket(8), f5 -> Ticket(8),

f1 -> Ticket(9), f2 -> Ticket(9))

ProcessManager - 2: Invoke started: P1 eats

53

[September 1, 2011 at 15:32]

54 appendix

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

TicketManager - 5: Ticket released: 8

TicketManager - 5: TICKETS: Map(Ticket(9) -> 2)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(9), f2 -> Ticket(9))

TicketManager - 5: Ticket issued: Ticket(10) for List(f4, f5)

TicketManager - 5: TICKETS: Map(Ticket(9) -> 2, Ticket(10) -> 5)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(9), f2 -> Ticket(9),

f4 -> Ticket(10), f5 -> Ticket(10))

ProcessManager - 5: Invoke started: P4 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 2: Invoke finished: P1 eats

TicketManager - 2: Ticket released: 9

TicketManager - 2: TICKETS: Map(Ticket(10) -> 5)

TicketManager - 2: RES_TIC: Map(f4 -> Ticket(10),

f5 -> Ticket(10))

TicketManager - 2: Ticket issued: Ticket(11) for List(f1, f2)

TicketManager - 2: TICKETS: Map(Ticket(10) -> 5,

Ticket(11) -> 2)

ProcessManager - 5: Invoke finished: P4 eats

TicketManager - 2: RES_TIC: Map(f4 -> Ticket(10),

f5 -> Ticket(10),

f1 -> Ticket(11),

f2 -> Ticket(11))

ProcessManager - 2: Invoke started: P1 eats

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

[September 1, 2011 at 15:32]

appendix 55

TicketManager - 5: Ticket released: 10

TicketManager - 5: TICKETS: Map(Ticket(11) -> 2)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(11),

f2 -> Ticket(11))

TicketManager - 5: Ticket issued: Ticket(12) for List(f4, f5)

TicketManager - 5: TICKETS: Map(Ticket(11) -> 2,

Ticket(12) -> 5)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(11),

f2 -> Ticket(11),

f4 -> Ticket(12),

f5 -> Ticket(12))

ProcessManager - 5: Invoke started: P4 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3, f4) while asking for List(f3, f4)

ProcessManager - 2: Invoke finished: P1 eats

TicketManager - 2: Ticket released: 11

TicketManager - 2: TICKETS: Map(Ticket(12) -> 5)

TicketManager - 2: RES_TIC: Map(f4 -> Ticket(12),

f5 -> Ticket(12))

ProcessManager - 5: Invoke finished: P4 eats

TicketManager - 5: Ticket released: 12

TicketManager - 5: TICKETS: Map()

TicketManager - 5: RES_TIC: Map()

TicketManager - 4: Ticket issued: Ticket(13) for List(f3, f4)

TicketManager - 4: TICKETS: Map(Ticket(13) -> 4)

TicketManager - 4: RES_TIC: Map(f3 -> Ticket(13),

f4 -> Ticket(13))

ProcessManager - 4: Invoke started: P3 eats

ProcessManager - 6: Conflict: One of the requested resources

is locked:

[September 1, 2011 at 15:32]

56 appendix

List(f5, f1) while asking for List(f5, f1)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

TicketManager - 6: Ticket issued: Ticket(14) for List(f5, f1)

TicketManager - 6: TICKETS: Map(Ticket(13) -> 4,

Ticket(14) -> 6)

TicketManager - 6: RES_TIC: Map(f3 -> Ticket(13),

f4 -> Ticket(13),

f5 -> Ticket(14),

f1 -> Ticket(14))

ProcessManager - 6: Invoke started: P5 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Invoke finished: P3 eats

TicketManager - 4: Ticket released: 13

TicketManager - 4: TICKETS: Map(Ticket(14) -> 6)

TicketManager - 4: RES_TIC: Map(f5 -> Ticket(14),

f1 -> Ticket(14))

TicketManager - 4: Ticket issued: Ticket(15) for List(f3, f4)

TicketManager - 4: TICKETS: Map(Ticket(14) -> 6,

Ticket(15) -> 4)

TicketManager - 4: RES_TIC: Map(f5 -> Ticket(14),

f1 -> Ticket(14),

f3 -> Ticket(15),

f4 -> Ticket(15))

ProcessManager - 4: Invoke started: P3 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 6: Invoke finished: P5 eats

TicketManager - 6: Ticket released: 14

TicketManager - 6: TICKETS: Map(Ticket(15) -> 4)

TicketManager - 6: RES_TIC: Map(f3 -> Ticket(15),

f4 -> Ticket(15))

TicketManager - 6: Ticket issued: Ticket(16) for List(f5, f1)

TicketManager - 6: TICKETS: Map(Ticket(15) -> 4,

Ticket(16) -> 6)

TicketManager - 6: RES_TIC: Map(f3 -> Ticket(15),

f4 -> Ticket(15),

f5 -> Ticket(16),

f1 -> Ticket(16))

ProcessManager - 6: Invoke started: P5 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

[September 1, 2011 at 15:32]

appendix 57

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Invoke finished: P3 eats

TicketManager - 4: Ticket released: 15

TicketManager - 4: TICKETS: Map(Ticket(16) -> 6)

TicketManager - 4: RES_TIC: Map(f5 -> Ticket(16),

f1 -> Ticket(16))

TicketManager - 4: Ticket issued: Ticket(17) for List(f3, f4)

TicketManager - 4: TICKETS: Map(Ticket(16) -> 6,

Ticket(17) -> 4)

TicketManager - 4: RES_TIC: Map(f5 -> Ticket(16),

f1 -> Ticket(16),

f3 -> Ticket(17),

f4 -> Ticket(17))

ProcessManager - 4: Invoke started: P3 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 6: Invoke finished: P5 eats

TicketManager - 6: Ticket released: 16

TicketManager - 6: TICKETS: Map(Ticket(17) -> 4)

TicketManager - 6: RES_TIC: Map(f3 -> Ticket(17),

f4 -> Ticket(17))

TicketManager - 6: Ticket issued: Ticket(18) for List(f5, f1)

TicketManager - 6: TICKETS: Map(Ticket(17) -> 4,

Ticket(18) -> 6)

TicketManager - 6: RES_TIC: Map(f3 -> Ticket(17),

f4 -> Ticket(17),

f5 -> Ticket(18),

f1 -> Ticket(18))

ProcessManager - 6: Invoke started: P5 eats

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 3: Conflict: One of the requested resources

is locked:

List(f2, f3) while asking for List(f2, f3)

ProcessManager - 4: Invoke finished: P3 eats

TicketManager - 4: Ticket released: 17

TicketManager - 4: TICKETS: Map(Ticket(18) -> 6)

TicketManager - 4: RES_TIC: Map(f5 -> Ticket(18),

f1 -> Ticket(18))

TicketManager - 3: Ticket issued: Ticket(19) for List(f2, f3)

TicketManager - 3: TICKETS: Map(Ticket(18) -> 6,

Ticket(19) -> 3)

TicketManager - 3: RES_TIC: Map(f5 -> Ticket(18),

f1 -> Ticket(18),

f2 -> Ticket(19),

f3 -> Ticket(19))

ProcessManager - 3: Invoke started: P2 eats

ProcessManager - 6: Invoke finished: P5 eats

TicketManager - 6: Ticket released: 18

TicketManager - 6: TICKETS: Map(Ticket(19) -> 3)

[September 1, 2011 at 15:32]

58 appendix

TicketManager - 6: RES_TIC: Map(f2 -> Ticket(19),

f3 -> Ticket(19))

ProcessManager - 3: Invoke finished: P2 eats

TicketManager - 3: Ticket released: 19

TicketManager - 3: TICKETS: Map()

TicketManager - 3: RES_TIC: Map()

TicketManager - 3: Ticket issued: Ticket(20) for List(f2, f3)

TicketManager - 3: TICKETS: Map(Ticket(20) -> 3)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(20),

f3 -> Ticket(20))

ProcessManager - 3: Invoke started: P2 eats

ProcessManager - 3: Invoke finished: P2 eats

TicketManager - 3: Ticket released: 20

TicketManager - 3: TICKETS: Map()

TicketManager - 3: RES_TIC: Map()

TicketManager - 3: Ticket issued: Ticket(21) for List(f2, f3)

TicketManager - 3: TICKETS: Map(Ticket(21) -> 3)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(21),

f3 -> Ticket(21))

ProcessManager - 3: Invoke started: P2 eats

ProcessManager - 3: Invoke finished: P2 eats

TicketManager - 3: Ticket released: 21

TicketManager - 3: TICKETS: Map()

TicketManager - 3: RES_TIC: Map()

Process finished with exit code 0

[September 1, 2011 at 15:32]

C
A P P E N D I X C

TicketManager - 2: Ticket issued: Ticket(7) for List(f1)

TicketManager - 2: TICKETS: Map(Ticket(7) -> 2)

TicketManager - 2: RES_TIC: Map(f1 -> Ticket(7))

TicketManager - 5: Ticket issued: Ticket(8) for List(f4)

TicketManager - 5: TICKETS: Map(Ticket(7) -> 2,

Ticket(8) -> 5)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(7),

f4 -> Ticket(8))

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 4: Conflict: My future resources

are locked:

List(f4) while asking for List(f3)

TicketManager - 3: Ticket issued: Ticket(9) for List(f2)

TicketManager - 3: TICKETS: Map(Ticket(7) -> 2,

Ticket(8) -> 5,

Ticket(9) -> 3)

TicketManager - 3: RES_TIC: Map(f1 -> Ticket(7),

f4 -> Ticket(8),

f2 -> Ticket(9))

TicketManager - 5: Ticket issued: Ticket(10) for List(f5)

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

TicketManager - 5: TICKETS: Map(Ticket(7) -> 2,

Ticket(8) -> 5,

Ticket(9) -> 3,

Ticket(10) -> 5)

TicketManager - 5: RES_TIC: Map(f1 -> Ticket(7),

f4 -> Ticket(8),

f2 -> Ticket(9),

f5 -> Ticket(10))

ProcessManager - 5: Invoke started: Phil_4 eats

TicketManager - 3: Ticket issued: Ticket(11) for List(f3)

TicketManager - 3: TICKETS: Map(Ticket(8) -> 5,

Ticket(7) -> 2,

Ticket(10) -> 5,

Ticket(11) -> 3,

Ticket(9) -> 3)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(9),

f4 -> Ticket(8),

f3 -> Ticket(11),

f5 -> Ticket(10),

f1 -> Ticket(7))

ProcessManager - 3: Invoke started: Phil_2 eats

59

[September 1, 2011 at 15:32]

60 appendix c

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 2: Conflict: One of the requested resources

is locked: List(f2) while asking for List(f2)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 5: Invoke finished: Phil_4 eats

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

ProcessManager - 3: Invoke finished: Phil_2 eats

TicketManager - 5: Ticket released: 10

TicketManager - 5: TICKETS: Map(Ticket(8) -> 5,

Ticket(7) -> 2,

Ticket(11) -> 3,

Ticket(9) -> 3)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(9),

f4 -> Ticket(8),

f3 -> Ticket(11),

f1 -> Ticket(7))

TicketManager - 5: Ticket released: 8

TicketManager - 5: TICKETS: Map(Ticket(7) -> 2,

Ticket(11) -> 3,

Ticket(9) -> 3)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(9),

f3 -> Ticket(11),

f1 -> Ticket(7))

TicketManager - 5: Ticket issued: Ticket(12) for List(f4)

TicketManager - 5: TICKETS: Map(Ticket(7) -> 2,

Ticket(11) -> 3,

Ticket(9) -> 3,

Ticket(12) -> 5)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(9),

f4 -> Ticket(12),

f3 -> Ticket(11),

[September 1, 2011 at 15:32]

appendix c 61

f1 -> Ticket(7))

TicketManager - 3: Ticket released: 11

TicketManager - 3: TICKETS: Map(Ticket(7) -> 2,

Ticket(9) -> 3,

Ticket(12) -> 5)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(9),

f4 -> Ticket(12),

f1 -> Ticket(7))

TicketManager - 3: Ticket released: 9

TicketManager - 3: TICKETS: Map(Ticket(7) -> 2,

Ticket(12) -> 5)

TicketManager - 3: RES_TIC: Map(f4 -> Ticket(12),

f1 -> Ticket(7))

TicketManager - 3: Ticket issued: Ticket(13) for List(f2)

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3,

Ticket(7) -> 2,

Ticket(12) -> 5)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(13),

f4 -> Ticket(12),

f1 -> Ticket(7))

TicketManager - 5: Ticket issued: Ticket(14) for List(f5)

TicketManager - 5: TICKETS: Map(Ticket(14) -> 5,

Ticket(13) -> 3,

Ticket(7) -> 2,

Ticket(12) -> 5)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(13),

f4 -> Ticket(12),

f5 -> Ticket(14),

f1 -> Ticket(7))

ProcessManager - 5: Invoke started: Phil_4 eats

TicketManager - 3: Ticket issued: Ticket(15) for List(f3)

TicketManager - 3: TICKETS: Map(Ticket(14) -> 5,

Ticket(15) -> 3,

Ticket(13) -> 3,

Ticket(7) -> 2,

Ticket(12) -> 5)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(13),

f4 -> Ticket(12),

f3 -> Ticket(15),

f5 -> Ticket(14),

f1 -> Ticket(7))

ProcessManager - 3: Invoke started: Phil_2 eats

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

ProcessManager - 6: Conflict: One of the requested resources

[September 1, 2011 at 15:32]

62 appendix c

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

ProcessManager - 6: Conflict: One of the requested resources

is locked:

List(f5) while asking for List(f5)

ProcessManager - 4: Conflict: One of the requested resources

is locked:

List(f3) while asking for List(f3)

ProcessManager - 2: Conflict: One of the requested resources

is locked:

List(f2) while asking for List(f2)

ProcessManager - 5: Invoke finished: Phil_4 eats

TicketManager - 5: Ticket released: 14

TicketManager - 5: TICKETS: Map(Ticket(15) -> 3,

Ticket(13) -> 3,

Ticket(7) -> 2,

Ticket(12) -> 5)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(13),

f4 -> Ticket(12),

f3 -> Ticket(15),

f1 -> Ticket(7))

TicketManager - 5: Ticket released: 12

TicketManager - 5: TICKETS: Map(Ticket(15) -> 3,

Ticket(13) -> 3,

Ticket(7) -> 2)

TicketManager - 5: RES_TIC: Map(f2 -> Ticket(13),

f3 -> Ticket(15),

f1 -> Ticket(7))

ProcessManager - 3: Invoke finished: Phil_2 eats

TicketManager - 3: Ticket released: 15

TicketManager - 3: TICKETS: Map(Ticket(13) -> 3,

Ticket(7) -> 2)

TicketManager - 3: RES_TIC: Map(f2 -> Ticket(13),

f1 -> Ticket(7))

TicketManager - 3: Ticket released: 13

TicketManager - 3: TICKETS: Map(Ticket(7) -> 2)

TicketManager - 3: RES_TIC: Map(f1 -> Ticket(7))

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

TicketManager - 4: Ticket issued: Ticket(16) for List(f3)

TicketManager - 4: TICKETS: Map(Ticket(16) -> 4,

Ticket(7) -> 2)

TicketManager - 4: RES_TIC: Map(f3 -> Ticket(16),

f1 -> Ticket(7))

TicketManager - 4: Ticket issued: Ticket(17) for List(f4)

[September 1, 2011 at 15:32]

appendix c 63

TicketManager - 4: TICKETS: Map(Ticket(16) -> 4,

Ticket(17) -> 4,

Ticket(7) -> 2)

TicketManager - 4: RES_TIC: Map(f4 -> Ticket(17),

f3 -> Ticket(16),

f1 -> Ticket(7))

ProcessManager - 4: Invoke started: Phil_3 eats

TicketManager - 2: Ticket issued: Ticket(18) for List(f2)

TicketManager - 2: TICKETS: Map(Ticket(18) -> 2,

Ticket(16) -> 4,

Ticket(17) -> 4,

Ticket(7) -> 2)

TicketManager - 2: RES_TIC: Map(f2 -> Ticket(18),

f4 -> Ticket(17),

f3 -> Ticket(16),

f1 -> Ticket(7))

ProcessManager - 2: Invoke started: Phil_1 eats

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 4: Invoke finished: Phil_3 eats

TicketManager - 4: Ticket released: 17

ProcessManager - 2: Invoke finished: Phil_1 eats

TicketManager - 4: TICKETS: Map(Ticket(18) -> 2,

Ticket(16) -> 4,

Ticket(7) -> 2)

TicketManager - 4: RES_TIC: Map(f2 -> Ticket(18),

f3 -> Ticket(16),

f1 -> Ticket(7))

TicketManager - 4: Ticket released: 16

TicketManager - 4: TICKETS: Map(Ticket(18) -> 2,

Ticket(7) -> 2)

TicketManager - 4: RES_TIC: Map(f2 -> Ticket(18),

f1 -> Ticket(7))

TicketManager - 4: Ticket issued: Ticket(19) for List(f3)

TicketManager - 4: TICKETS: Map(Ticket(18) -> 2,

Ticket(19) -> 4,

Ticket(7) -> 2)

TicketManager - 4: RES_TIC: Map(f2 -> Ticket(18),

f3 -> Ticket(19),

f1 -> Ticket(7))

TicketManager - 2: Ticket released: 18

TicketManager - 2: TICKETS: Map(Ticket(19) -> 4,

Ticket(7) -> 2)

TicketManager - 2: RES_TIC: Map(f3 -> Ticket(19),

f1 -> Ticket(7))

[September 1, 2011 at 15:32]

64 appendix c

TicketManager - 2: Ticket released: 7

TicketManager - 2: TICKETS: Map(Ticket(19) -> 4)

TicketManager - 2: RES_TIC: Map(f3 -> Ticket(19))

TicketManager - 2: Ticket issued: Ticket(20) for List(f1)

TicketManager - 2: TICKETS: Map(Ticket(19) -> 4,

Ticket(20) -> 2)

TicketManager - 2: RES_TIC: Map(f3 -> Ticket(19),

f1 -> Ticket(20))

TicketManager - 4: Ticket issued: Ticket(21) for List(f4)

TicketManager - 4: TICKETS: Map(Ticket(19) -> 4,

Ticket(20) -> 2,

Ticket(21) -> 4)

TicketManager - 4: RES_TIC: Map(f4 -> Ticket(21),

f3 -> Ticket(19),

f1 -> Ticket(20))

ProcessManager - 4: Invoke started: Phil_3 eats

TicketManager - 2: Ticket issued: Ticket(22) for List(f2)

TicketManager - 2: TICKETS: Map(Ticket(19) -> 4,

Ticket(22) -> 2,

Ticket(20) -> 2,

Ticket(21) -> 4)

TicketManager - 2: RES_TIC: Map(f2 -> Ticket(22),

f4 -> Ticket(21),

f3 -> Ticket(19),

f1 -> Ticket(20))

ProcessManager - 2: Invoke started: Phil_1 eats

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 6: Conflict: My future resources

are locked:

List(f1) while asking for List(f5)

ProcessManager - 4: Invoke finished: Phil_3 eats

TicketManager - 4: Ticket released: 21

TicketManager - 4: TICKETS: Map(Ticket(19) -> 4,

Ticket(22) -> 2,

Ticket(20) -> 2)

TicketManager - 4: RES_TIC: Map(f2 -> Ticket(22),

f3 -> Ticket(19),

f1 -> Ticket(20))

TicketManager - 4: Ticket released: 19

TicketManager - 4: TICKETS: Map(Ticket(22) -> 2,

Ticket(20) -> 2)

TicketManager - 4: RES_TIC: Map(f2 -> Ticket(22),

f1 -> Ticket(20))

ProcessManager - 2: Invoke finished: Phil_1 eats

TicketManager - 2: Ticket released: 22

TicketManager - 2: TICKETS: Map(Ticket(20) -> 2)

TicketManager - 2: RES_TIC: Map(f1 -> Ticket(20))

[September 1, 2011 at 15:32]

appendix c 65

TicketManager - 2: Ticket released: 20

TicketManager - 2: TICKETS: Map()

TicketManager - 2: RES_TIC: Map()

TicketManager - 6: Ticket issued: Ticket(23) for List(f5)

TicketManager - 6: TICKETS: Map(Ticket(23) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(23))

TicketManager - 6: Ticket issued: Ticket(24) for List(f1)

TicketManager - 6: TICKETS: Map(Ticket(23) -> 6,

Ticket(24) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(23),

f1 -> Ticket(24))

ProcessManager - 6: Invoke started: Phil_5 eats

ProcessManager - 6: Invoke finished: Phil_5 eats

TicketManager - 6: Ticket released: 24

TicketManager - 6: TICKETS: Map(Ticket(23) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(23))

TicketManager - 6: Ticket released: 23

TicketManager - 6: TICKETS: Map()

TicketManager - 6: RES_TIC: Map()

TicketManager - 6: Ticket issued: Ticket(25) for List(f5)

TicketManager - 6: TICKETS: Map(Ticket(25) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(25))

TicketManager - 6: Ticket issued: Ticket(26) for List(f1)

TicketManager - 6: TICKETS: Map(Ticket(25) -> 6,

Ticket(26) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(25),

f1 -> Ticket(26))

ProcessManager - 6: Invoke started: Phil_5 eats

ProcessManager - 6: Invoke finished: Phil_5 eats

TicketManager - 6: Ticket released: 26

TicketManager - 6: TICKETS: Map(Ticket(25) -> 6)

TicketManager - 6: RES_TIC: Map(f5 -> Ticket(25))

TicketManager - 6: Ticket released: 25

TicketManager - 6: TICKETS: Map()

TicketManager - 6: RES_TIC: Map()

Process finished with exit code 0

[September 1, 2011 at 15:32]

[September 1, 2011 at 15:32]

B I B L I O G R A P H Y

[1] Tiresias organization. http://www.tiresias.org/about/history.htm,
1980.

[2] Duke project. http://smarthome.duke.edu/, 1995.

[3] Tiresias organization. http://www.tiresias.org/research/researchers/projects/ami/askit.htm,
2004.

[4] DAFFIE project. scv.bu.edu/visualization/daffie/index.html,
2008.

[5] SketchUp project. sketchup.google.com, 2008.

[6] Netcarity organization. http://www.netcarity.org/About.11.0.html,
2009.

[7] ViSi demo. www.sm4all-project.eu/index.php/activities/videos.html,
2009.

[8] M. Aiello. The Role of Web Services at Home. In IEEE Web
Service-based Systems and Applications (WEBSA), 2006.

[9] M. Aiello and S. Dustdar. Are our homes ready for services? A
Domotic Infrastructure based on the Web Service Stack. Pervasive
and Mobile Computing, 4(4):506–525, 2008.

[10] Akka. http://akka.io/docs/akka/1.2-RC3/.

[11] Akka. http://akka.io/docs/akka/1.2-RC3/java/untyped-
actors.html.

[12] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services.
Concepts, Architectures and Applications. Springer, 2004.

[13] BPEL. Business process execution language for web services.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[14] Roy T. Fielding and Richard N. Taylor. Principled design of the
modern web architecture. ACM Trans. Internet Technol., 2(2):115–
150, 2002.

[15] W. K. Chan Heng Lu and T. H. Tse. Static slicing for pervasive
programs. In 6th International Conference on Quality Software (QSIC
2006), pages 185–192, 2006.

67

[September 1, 2011 at 15:32]

68 Bibliography

[16] Yu Huang, Xiaoxing Ma, Jiannong Cao, Xianping Tao, and Jian
Lu. Concurrent event detection for asynchronous consistency
checking of pervasive context. In Proceedings of the 2009 IEEE In-
ternational Conference on Pervasive Computing and Communications,
pages 1–9, Washington, DC, USA, 2009. IEEE Computer Society.

[17] JSON. http://http://www.json.org/.

[18] A. Lazovik, E. Kaldeli, E. Lazovik, and M. Aiello. Planning in a
smart home: Visualization and simulation. In 19th International
Conference on Automated Planning and Scheduling (ICAPS 2009),
2009.

[19] E. Lazovik, P. den Dulk, M. de Groote, A. Lazovik, and M. Aiello.
Services inside the smart home. a simulation and visualization
tool. In International Conference on Service Oriented Computing
(ICSOC 2009), 2009.

[20] M. Papazoglou. Web Services: Principles and Technology. Prentice
Hall, 2008.

[21] SM4ALL project. EU STREP Project FP7-224332 Smart Homes for
All. www.sm4all-project.eu, 2008.

[22] SoftCraft. Btrieve. http://en.wikipedia.org/wiki/Btrieve, 2008.

[23] RDP support. Pervasive sql client for citrix server.
http://support.resortdata.com/PervasiveSales/Pervasive.htm,
2010.

[24] SOAP v1.2. Simple object access protocol.
http://www.w3.org/TR/soap12-part1.

[25] Wikipedia. http://en.wikipedia.org/wiki/Event-
driven_programming.

[26] Wikipedia. http://en.wikipedia.org/wiki/Dining_philosophers_problem.

[27] WS-Transaction. http://dev2dev.bea.com/pub/a/2004/01/ws-
transaction.html.

[September 1, 2011 at 15:32]

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	2.1 Projects in the field of Smart Homes
	2.2 Concurrent Execution in Pervasive Systems

	3 SM4ALL Project
	3.1 Architecture of SM4ALL

	4 Orchestration model for the SM4ALL project
	4.1 Responsibilities
	4.2 Dependencies
	4.3 Formal orchestration model

	5 Orchestrator Implementation
	5.1 Event-Based Actor Scheme
	5.2 Process model
	5.3 Basic Components
	5.4 Communication with Environment

	6 The Scenarios and Orchestrator Running
	7 Testing and Evaluation of the Solution
	7.1 Critical section test
	7.2 Dining Philosophers test
	7.3 The Evaluation of the Solution

	8 Conclusions and Discussions
	A Appendix
	B Appendix
	C Appendix C

