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In the production of paper, one important paper quality parameter is the moisture content. 
However controlling paper quality is a difficult task as the measurement of this quality is affected 
by a large dead time in the production process. 
In order to overcome this problem, one possibility is to develop a predictive model based on the 
key variables affecting the paper quality, that are measured more frequently. In this way it should 
be possible that the paper quality parameter can be determined at an early stage of the production 
process. This thesis describes the development of such a predictive model for the Sappi paper mill 
in Nijmegen. Analysis of the raw process data with the use of principal component analysis 
yielded that the process data was arranged in clusters of consecutive data. The cause of this 
arrangement was found in the variation of the average values of the process input variables. 
Although many modelling techniques are available, in this thesis a linear regression technique 
(PLS) as well as a non-linear technique (Robust LSSVM) was used for the development of a 
predictive model. It was found that both techniques showed comparable results for the prediction 
of the paper quality, therefore for the predictive models, PLS was preferred because of its 
simplicity. The initial developed PLS models in combination with a bias update showed 
promising results regarding the goodness of fit. However the models used a too small range of 
variables close to the measurement of the paper quality, therefore these models are not real 
predictive models. However these models can be used as a substitute measurement of the paper 
quality in case the real measurement fails. The final PLS model is based on manually controllable 
variables and important process values, in combination with an online update of the bias term in 
the PLS model. Due to the nature of these variables, this model is more likely to be used for 
controlling the paper quality. The final model showed a good fit both with and without the online 
update incorporated. One remark has to be made however. The developed model is only tested for 
the production of paper with a gram weight of 90 g/m2. As the paper mill produces a wider range 
of gram weights, it is required to perform the analysis presented in this thesis again for the other 
paper gram weights.  
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The last year of the Chemical Engineering master program at the University of Groningen 
consists of a self chosen research project in one of the fields of chemical engineering present in 
the department. Although the department offers a variety of topics in product engineering, I was 
more interested in topics in process engineering.  
During the bachelor program Chemical Engineering at the University of Groningen I attended the 
courses Process Dynamics and From Data to Model, given by prof. dr. ir. B. Roffel. During these 
courses multiple modelling techniques were explained on the basis of their use in (chemical) 
processes. During these courses it intrigued me what the effects of a well-trained model are for 
the overall operation of a process.      
Furthermore with a research project in the discipline of Process Dynamics and Control, it was 
possible to combine my common interest in both chemical engineering and IT. 
 
Fortunate enough prof. dr. ir. B. Roffel had an opportunity to perform a research project in the 
discipline of Process Control. This research project focused on the development of a predictive 
model in a paper mill. This research project appealed to me immediately, as the results of such a 
research project can be applied in real life and do not only exist in theory. Ultimately this thesis is 
the result of this research project.  
 
At this point I would like to thank prof. dr. ir. B. Roffel for his guidance during this research 
project and the opportunity to perform a research project under his supervision. Whenever advice 
was needed or alternative approaches were required I could revert to his experience. 
Furthermore I would like thank Joost Dercksen and Rene van Wieringen from Sappi Nijmegen 
for the possibility to perform a research project at the Sappi paper mill in Nijmegen, the supply of 
process data and their feedback on the results of this research project. 
 
Overall I can say that this research project was a great experience. 
 
20th of April, 2011 
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In today’s world, paper has become a common material used in a variety of applications. It is, for 
example, used as: 
 

o Copy paper for printers, copying machines and writing 
o Newsprint 
o Wrapping and packaging  
o Hygienic tissues 
o Paper currency 

 
These numbers of applications are in sharp contrast with the beginning of the paper production 
when paper was only used for calligraphy. The first known production of paper is ascribed to the 
Chinese Cai Lun and dates back to 105 AD. The first paper was made from mortared bark of trees, 
hemp, rags and fishnets. In subsequent years the process was improved for use with other raw 
materials, however, paper making was still only performed in China. It took more than five 
hundred years before the paper making started to spread around the world. It took another five 
hundred years before the paper making became known in Europe. From then on the process 
became increasingly mechanized in order to obtain a higher production and reducing the 
production costs. In 1808 this resulted in a design (figure 1.1) of a paper machine which still 
counts as a reference for the basic design of current paper machines. 
 

 
Figure 1.1 Basic paper machine design dating from 1808 [19] 

 
The basic paper machine was equipped with additional features (i.e. refiners, dryers, coaters and 
calendars) in subsequent years, mainly to obtain an increased production at lower costs but also to 
produce a more consistent product and a larger variety of products. [8] 
Modern paper machines have evolved to advanced pieces of machinery with large production 
capacities, however, paper mills are still facing difficulties.  
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On the one hand, customers of paper mills become more and more demanding when it comes to 
price/quality ratio of the products. On the other hand the paper mill has to meet stricter 
governmental and environmental regulations while also maintaining an economic viable process 
operation. These difficulties can partially be overcome by automating the production process, 
thus reducing expensive manual labour and maintaining a more constant production process. The 
latter is, however, already accomplished on modern paper machines as these machines have been 
equipped with evolving advanced computer control since the 1960s.  
The current trend to overcome the difficulties is to detect deviations from normal process 
operation at an early stage of the process with physical and/or statistical models. 
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Research on physical and statistical models in the paper making industry has primarily focused on 
three topics in recent years, i.e. multivariate process monitoring, model based prediction of sheet 
breakage and model based control of the dryer section. Although research is performed on each 
topic individually, one will see an overlap in the results of the studies described in the upcoming 
sections.  
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Modern paper machines are equipped with different computer controls that generally operate 
individually or in a limited number of control loops. The consequence of such a distributed 
control system is that large amounts of information are presented to operators at the same time. 
This can lead to an information overload that might result in a wrong, or even no response of an 
operator in case of deviant process operation. It would therefore be advantageous if the vital 
process information could be presented to operators in workable amounts. This implies that the 
dimension of the original process data has to be reduced. A commonly used technique for data 
reduction in the process industry is principal component analysis (PCA). The basic idea behind 
PCA is to translate the original process data into a new linear set of variables (principle 
components) that describe maximum variability of the process data. As PCA will be used in this 
thesis a more thorough discussion will be given in a subsequent chapter.  
In recent years, Bissessur et al. [3] and Skoglund et al. [17][18] have performed research on the 
development of multivariate process monitoring models.  
The PCA model in the research of Bissessur et al. was developed for a dataset consisting of 60 
process variables and 565 measurements representing a good production run. With PCA, the 
number of variables could be reduced to eight new variables that described 80% of the original 
variability. For monitoring of the process, it is suggested to use the scores (i.e. information how 
measurements relate to each other) of the lower order sixth and eight principal component. The 
underlying idea for this suggestion is that higher order principal components describe the major 
sources of variability, whereas the lower order principal components can already describe small 
process deviations before the deviations become a major source of variability. In addition to a 
score monitoring plot, Bissessur et al. suggest the use of the squared prediction error (SPE) of the 
residuals (or Q-residual) as a second monitoring parameter. As the name indicates, this parameter 
is calculated as the square of the difference between the new observation and the reference 
predicted value. For a trained PCA model, a specific Q-residual value is calculated which 
represents the boundary of normal process operation. In case of an unusual process deviation the 
Q-residual value will move out of this boundary. Bissessur et al. demonstrated, after a validation 
of the model with data from a process malfunction, that the developed model was capable of 
detecting the process deviation. In combination with contribution plots of the original variables it 
was even possible to identify the process variable that caused the deviation. Although the 
demonstration yielded the expected result, Bissessur et al. emphasized that for a more efficient 
process monitoring a new model should be developed for data that spans the full space of process 
operation. 
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The initial research of Skoglund et al. also focused on the development of a PCA monitoring 
model. For the development of the model a dataset consisting of 177 variables and 268 
measurements was used. With PCA, the number of variables could be reduced to six principal 
components that described 55% of the original variability. Monitoring with this model is based on 
the score plot of the first two principal components and the deviation of each process variable to 
the PCA model. A demonstration of the model in a production facility showed that the model 
yielded stable predictions for all products produced, although the model was developed with data 
from a few of these products. Skoglund et al. imply that the latter is the result of the ‘grey-box’ 
nature of their model which indicates that both empirical data as well as process knowledge have 
been used in the development of the model. For a consistent robust model, Skoglund et al. 
emphasize that the model should be updated regularly in order to compensate for possible 
changes in the process operation. In the subsequent research of Skoglund et al. the original PCA 
model is extended with a knowledge based system (KBS). The most basic form of a knowledge 
based system consists of a number of predefined rules that take action when a certain criterion 
occurs. According to Skoglund et al. the performance of monitoring increases with the 
implementation of a KBS as variables can be selected or ignored more accurately for the PCA 
model. In addition the KBS can select a different model based on the measurements, thereby 
selecting the optimal model for each situation. The latter will help to improve the detection of 
deviant process behaviour, thus a more consistent process operation can be achieved. 
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Increasing the production of paper mills was partly accomplished by increasing the machine 
speed. However due to this high speed and the large number of cylinders in the paper machine, 
the paper sheet is subjected to high shear- and tear forces. These forces may lead to breakage of 
the paper sheet in case of weaknesses in the paper sheet. Weaknesses are, for example, 
excessively dry or wet paper sheet, too small fibres or uneven distribution of the fibres in the 
sheet.  
The occurrence of a sheet breakage involves down time of the production process as well as loss 
of material, thus resulting in large costs. It is estimated that sheet breakage account for 2 – 7 
percent of the total production loss for modern paper machines. [2] Therefore reducing the 
number of sheet breaks is an important factor for the performance (i.e. production) of a paper mill.  
Modern paper mills are equipped with a visual surveillance system that tracks the paper sheet in a 
number of critical points. In this way sheet breaks can be detected and it might be possible to find 
the cause of the break, but it is not possible to indicate whether a paper sheet will break or not. 
Predicting the occurrence of sheet breakage at an early stage of the production process would 
therefore be advantageous. As far as known, Li [9] was the only researcher who developed a 
successful multivariate predictive model for sheet breakage. In the research of Li, Partial Least 
Square (PLS) regression is used for the development of the predictive model. The basic idea 
behind PLS is similar to PCA, however with PLS a distinction is made between the process input 
variables and the process output variable(s). Ultimately PLS results in a linear equation of new 
variables (latent variables) which describe both maximum variability of the process input 
variables as well as maximum correlation between the process input variables and the process 
output. As PLS will be used in this thesis a more thorough discussion will be given in a 
subsequent chapter. In addition, Li used PCA for the development of a monitoring tool which is 
combined with a KBS in order to make correct decisions in case of abnormal process operation. 
Li developed a PLS model based on 43 variables and 3180 measurements. With PLS, the number 
of variables could be reduced to three latent variables that describe 92.67% of the variance in the 
Y (process output)-block and 74.20% of the variance in the X (process inputs)-block. Although 
this PLS model predicted the sheet breaks in the validation dataset correctly, Li found that some 
of the used variables are not true predictors of sheet breakage. These variables vary 



 
 

 
 

4 

simultaneously with the predicted variable thus yielding a strong correlation which is the basis of 
a PLS model.  
In order to overcome this problem, Li used a pre-treatment in which all data in and during a sheet 
break was given the value of the corresponding set point. Subsequently a new PLS model was 
developed consisting of three latent variables that described 60.13% of the variance in the Y-
block. With this PLS model Li was able to find the four most important predictor variables for 
sheet breakage. The variables consisted of the dryer steam pressure, dryer differential pressure 
and sheet formation rolls loadings. Li implied that this combination of variables ultimately is a 
representative of the moisture content of the paper sheet and thus a plausible reason for the 
occurrence of sheet breakage. In the validation of the PLS model with new data, as can be seen in 
figure 1.2, Li showed that the model was capable of predicting 92% of the sheet breaks correctly.    

 
Figure 1.2 Results of the validation with new data in the study of Li. [9] 
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Paper making requires large quantities of water. For one kilogram of paper, approximately 100 
litres of water is required. [14] The larger part of this water is removed from the paper sheet by 
natural dewatering and mechanical dewatering. In terms of moisture content of the paper sheet it 
is reduced from roughly 97% to 45% - 55% in these steps. Product specifications require, 
however, a moisture content of 2% - 5% of the paper sheet. Although it appears that a large 
amount of water has to be removed in the dryer section based on the percentages, in reality this 
corresponds to an amount of 1 kg – 2 kg of water.[10] As this water is retained between the fibres 
through hydrogen bonds, it requires a large amount of energy to break these bonds and 
subsequently evaporate the water. Energy is applied to the paper sheet with the use of steam 
heated cylinders. The steam supply is currently controlled in a cascaded control loop. With a 
cascaded control loop the temperature of the most important drying cylinder is controlled based 
on the moisture content measurement and subsequently the temperature of the other drying 
cylinders is adjusted generally according to specified ratios. In this way it is possible to obtain the 
desired temperature gradient throughout the dryer section. 
In case of an increase or decrease in the moisture content of the paper sheet, the set point of the 
drying cylinder has to be changed. As it takes some time to heat or cool the cylinder this change 
will not have an immediate effect on the temperature profile. Ultimately this will result in off-
spec product or an increased probability of sheet breakage.    
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As direct quality measurements are not available in the dryer section, research has primarily 
focused on the development of a physical model.  
As physical models describe a process based on physical and chemical laws of conservation (e.g. 
energy or mass balance); such a model can be used for better understanding of important factors 
influencing the dryer section.  
Slätteke et al. [19] have developed a physical model for a steam heated dryer cylinder. With the 
knowledge obtained, Slätteke et al. first optimized the currently used control loop for the steam 
pressure. In addition two extensions of the control loop were suggested. The first suggestion 
involves a feedback control system based on the airflow through the drying section to assist the 
steam pressure control.  
By controlling the air flow, the uptake of evaporated water can be controlled by means of dew 
point variations. The dew point measurement is a good representative of the moisture content of 
the paper sheet and has a fast response time to changes compared to the response time of the 
steam pressure control. Ultimately this results in a faster adjustment to a new situation thus, 
reducing the time where off-spec product is produced. The second suggestion involves a feed 
forward control system based on a surface temperature measurement. On the basis of a number of 
these measurements, it is possible to determine deviations in moisture content of the paper sheet. 
As these measurements are suggested to be performed in the first stage(s) of the dryer section it is 
possible to make an adjustment for the final stages, thus preventing the production of off-spec 
product. As can be seen in figure 1.3, the effect of a change in moisture content can be suppressed 
with the use of one or both of the suggested control systems.  
 

 
Figure 1.3 Comparison of the different suggested control systems in the study of Slätteke et al. [19] 

 
Although these control system have not yet been tested in a real life situation, it showed a high 
potential for subsequent research.     
In the research of Li et al.[10] another alternative feed forward control system is described on the 
basis of the vacuum dewatering boxes in combination with the actual moisture content 
measurement. Li et al. suggest the use of air flow measurements of the vacuum dewatering boxes 
as a substitute measurement for the moisture content of the paper sheet. The underlying idea of 
this control strategy is to fully utilize the vacuum dewatering boxes in order to minimize the 
energy requirement of the dryer section. An indicative validation of the model obtained, showed 
that the model could compensate for an error in the incoming moisture content up to 10% and a 
subsequent error of 8% in the middle of the process. However these results were not reliable and 
accurate enough to conclude that the model was an improvement for the control strategy. Li et al. 
emphasized that the model requires more optimization before it can be concluded that this model 
is an improvement for a real control scheme. 
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Although the validation yielded positive results, Li et al. emphasized that the model requires 
more optimization before it is robust and accurate enough for use in a real control scheme. 
Wade et al. [23] performed an exploratory study on the use of multivariate regression techniques 
for the prediction of the moisture profile in the dryer section. Wade et al. used twenty online 
measured variables ranging from the basis weight of the paper sheet to steam pressures in the 
dryer. In addition 183 offline measurements of the paper moisture were included in the training 
data sets. The optimal PLS model consisted of 7 latent variables. Wade et al. found that under 
normal operating conditions, the model could predict the moisture content well (figure 1.4). 
 

 
Figure 1.4 Predicted and measured moisture profile at normal operation conditions. [23]  

 
Wade et al. used two additional dataset in which, deliberately, respectively five and one fault(s) 
were incorporated. The results thus obtained (figure 1.5) showed that the predictive ability of the 
model deteriorated dependent on the severity of the fault.  
 

 
Figure 1.5 Predicted and measured moisture profile in case of faults present in the dataset. 

Fault 1 contained five faults; Fault 2 contained one fault. [23]  
 
Based on the results obtained for normal operation conditions Wade et al, however, concluded 
that the model showed a high potential for subsequent research.  
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The literature review showed that multivariate statistical modelling is already used for a number 
of applications in the paper industry.  
From the literature review it can be concluded that one of the most important paper quality 
parameters in the production process of paper is the moisture content. Furthermore it can be 
concluded that the moisture is also one of the most difficult parameters to control in the 
production process. The latter is mainly caused by the large dead time which arises from the 
location of the measurement of the moisture content almost at the end of a paper machine.  
It would be advantageous to measure the moisture at additional stages of the process. On the one 
hand this requires a large investment for the equipment while on the other hand the placement of 
the equipment turns out to be difficult. This is caused by the fact that the paper sheet has to move 
freely for this type of measurement and this is not possible at all stages of the process. 
The other option is to determine a statistical model that can predict the moisture content, or paper 
quality, based on a number of key variables at an early stage of the production process which 
have influence on the paper quality.  
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This thesis will show the steps involved in the development of such a predictive model. The steps 
performed in this thesis can be summarized as follows: 
 

1. Perform a multivariate statistical analysis to determine whether the process operation is in 
control. In case the process is out of control an additional analysis is required to 
determine a possible cause.  

2. Determine the variables that influence the paper quality. 
3. Develop a predictive model on the basis of the variables obtained in step 2.  

 
Ultimately the development of a predictive model should result in a better understanding of which 
variables influence the paper quality the most. Due to this it should be possible to control the 
paper quality more consistently thus resulting in a more consistent process operation which in 
turn should translate into lower production loss and a reduction in energy consumption.   
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In this chapter an overview of the production facility will be given from which data is used for the 
development of a model for the paper quality. Furthermore an overview will be given of the 
production process applied in this production facility. Finally an overview will be given of the 
process data used for the development of the predictive model.  
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The research presented in this thesis has been performed in association with the Sappi paper mill 
in Nijmegen. The Sappi group has its origin in 1936 and currently consist of eighteen paper mills 
that collectively produce 6.8 million tons of coated fine paper per annum. This makes Sappi the 
number one of the leading producers of coated fine paper globally. Apart from this, the Sappi 
group also produces paper pulp, chemical cellulose, uncoated paper and packaging paper. [15] 
The Nijmegen paper mill has its origin in 1908 and since 1997 it is part of the Sappi group. [7] 
The paper mill operates a single paper machine (PM 7) with a maximum production capacity of 
300.000 tons per annum. The Nijmegen paper mill exclusively produces reels of two-sided 
double coated fine paper with gram weights ranging from 90 g/m2 to 170 g/m2 in three different 
types of finish. Paper with these finishes is known under the brand name Royal Roto with the 
suffix Matt, Silk or Brilliant Plus for the finish used. [13] Throughout this thesis these finishes 
will be denoted as grade A, B and C. An overview of the production facility in Nijmegen is 
shown in figure 2.1.  
 

 
Figure 2.1 Production facility of the Sappi paper mill in Nijmegen. [13] 
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The production process of paper used in the Nijmegen paper mill can be divided into seven 
sections as schematically shown in figure 2.2.  

 
Figure 2.2 Schematic representation of the paper making process in the Nijmegen paper mill.  
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The starting material for the paper making process consists, on one hand, of recycled material 
from previous production runs which is re-pulped in water. On the other hand the starting 
material consists of bleached pulp of cellulose from a variety of coniferous trees and deciduous 
trees.  
On entering, the cellulose pulp is grounded into a suspension of fibres in water in order to obtain 
a larger surface area which is translated into better properties of the final paper sheet.  
Before entering the paper machine auxiliary materials (i.e. fillers, additives and binders) are 
added to the suspension of fibres and recycled material. 
In the paper machine the suspension is evenly distributed over the entire width of the wire. Along 
the wire section the paper sheet is formed since water can fall through the wire, whereas the fibres 
and auxiliary materials accumulate on the wire. Initially dewatering only occurs through 
gravitational forces. Once the natural dewatering has taken place, mechanical dewatering (i.e. 
suction boxes) is applied on both sides of the paper sheet. Subsequently the paper sheet is led 
through a series of presses for another dewatering step and thickness control. The remaining 
water in the paper sheet is removed in the dryer section by means of vaporisation. The required 
heat is applied through direct contact of the paper sheet with a number of heated cylinders.  
The second last step comprises the application of a coating on both sides of the paper sheet. The 
coating mainly consists of pigments and binders and is used to enhance both the visual and tactile 
characteristics of the paper sheet as well as the printability. In the product finishing section the 
paper sheet is led through a calendar where the actual visual and tactile characteristics are 
determined by applying pressure and/or heat to the coated paper sheet. Once the required visual 
and tactile characteristics have been obtained the paper sheet is winded onto a reel and 
subsequently cut into the desired size before it is shipped to the customer. [14] 
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Like other modern paper mills, the Nijmegen paper mill is equipped with a large number of 
sensors along the production line to measure a variety of parameters. Measured parameters 
include for example temperature, pressure, flow, base weight of the paper sheet and most 
important for this thesis the moisture content of the paper sheet. 
The raw data from the paper mill consists of 140 selected variables, measured throughout the 
production process up to the dryer section, with a sampling rate of one minute. In total, 
continuous process data from seven production runs is available for the development of predictive 
models. An overview of the available datasets is given in table 2.1. 
 

Table 2.1 Raw process data obtained from the Nijmegen paper mill  
Dataset Grade(s) Gram weight Run period Measurements 

1 C 90 g/m2 23-01-2010 17:01 – 24-01-2010 14:00 1260 
2 B 90 g/m2 14-02-2010 12:00 – 15-02-2010 05:00 1021 
3 B 90 g/m2 20-02-2010 22:00 – 21-02-2010 22:00 1441 
4 A, B, C  90 g/m2 17-04-2010 14:00 – 19-04-2010 07:00 2461 
5 A, B, C 90 g/m2 26-04-2010 02:00 – 26-04-2010 20:18 1099 
6 A, B, C 90 g/m2 30-04-2010 14:00 – 01-05-2010 08:18 1099 
7 A, B, C 90 g/m2 17-05-2010 14:00 – 18-05-2010 08:18 1099 
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Before process data can be used for the development of a model, it has to be verified that the data 
represents correct process operation. With the relatively large amount of available data, it would 
be expected that it is rather easy to ascertain correct process operation. However in reality the 
high dimensionality of the data (large number of measured variables) is the key factor that makes 
it difficult to extract useful process information from the data. In this chapter the techniques used 
for processing of the process data and the techniques for the development of a predictive model 
will be described. 
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Before applying data reduction techniques on the process data, a visual inspection of this process 
data is useful in order to detect measurements from failing or offline sensors. As will be shown in 
the upcoming sections, high measurement variance is the key factor in the development of a 
predictive model. If a sensor is offline or fails during the complete range of the dataset, the 
measurements are more or less constant thus resulting in a low variance. This will not give 
difficulties in the data reduction techniques, as these techniques ignore low variance variables. It 
will, however, give rise to deviant results in the development of a predictive model as these faulty 
measurements distort the predictive capacity of the model.               
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As it is not possible to visualize more than 3 variables at once, numerous combinations of 
variables have to be checked in order to visually ascertain correct operation of the process. An 
additional factor that complicates visual ascertaining of the process operation is the high 
correlation that usually exists in process data. Such correlations account for interactions between 
variables which are difficult to detect with a visual inspection. 
To overcome these difficulties it would be advantageous if the dimension of the data could be 
reduced while preserving essential features of the data. 
Principal Component Analysis (PCA) is a tool for reducing the dimension of data by identifying 
patterns in the data (i.e. correlated variables) and expressing this data in a smaller set of new 
uncorrelated variables. In order to perform a PCA, the raw process data is presented as an n by m 
data matrix, where each column (n) represents a variable and each row (m) represents a 
measurement. 
 

 
11 12 1

21 22 2

1 2

n

n

m m mn

x x x

X x x x

x x x

� �
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  (3.1) 

 
For the decomposition of the data matrix X, PCA starts with the covariance matrix of X which is 
defined as: 

 cov( )
1

TX X
X

m
=

−
  (3.2) 

  
Precondition for this notation of the covariance matrix is that the columns of X have been mean-
centered or auto-scaled.  
Mean-centering comprises of subtracting the column average from the columns. Mean-centering 
is however best used for analogous data as it does not incorporate numerical variance.  
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As process data consist of various measurements (i.e. temperature, pressure, flow) with different 
magnitudes and thus numerical variance, mean-centering will give distorted results. The better 
option for process data is auto-scaling as this procedure involves a normalizing step where the 
mean-centered column is dived by its standard deviation. Due to this normalizing step, equation 
3.2 gives the correlation matrix instead of the covariance matrix.  
 
The next step of the decomposition relies upon the eigenvector translation of the 
covariance/correlation matrix. With this translation the covariance/correlation matrix can be 
written into a number of eigenvector (pi) and eigenvalue (�i) combinations.  
 
 ( )cov i i iX p pλ=  (3.3) 

 
In this translation pi gives information how the variables relate to each other, hence the name 
loading vector. The eigenvalue is a measure for the variance captured. As i increases, the 
eigenvalues decrease   
The number of combinations can at maximum be equal to the number of original variables.  
However, in practice it is found that the data can be adequately described with far fewer 
combinations than original variables. The appropriate number of combinations is generally 
determined by the eigenvalue. Combinations with an eigenvalue > 1 are selected (k), whereas the 
other combinations (generally represent noise in the dataset) are consolidated into a residual 
matrix (E).  
Finally, information on how the measurements relate to each other is required. This information is 
described in the score vector (ti) which is determined using the following equation.  
 
 i it Xp=  (3.4) 
 
The data matrix X can now be described as a linear combination of the outer product of the score 
vectors and loading vectors for k eigenvector/eigenvalue combinations and the residual matrix (E). 
 
 1 1 2 2

T T T
k kX t p t p t p E= + + + +�  (3.5) 

 
As the score vectors form an orthogonal set (i.e. jitt j

T
i ≠= for  0 ) and the eigenvectors form an 

orthonormal set (i.e. jippjipp j
T
ij

T
i ==≠= for  1 ,for  0 ), the new variables, or principal 

components, are uncorrelated.  Because of this each principal component describes the maximum 
variance in the direction given by the loading vector.  
 

 
Figure 3.1 Graphical representation of a principal component analysis. [24] 
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In practice, the first two principal components capture most of the variance in the dataset. In case 
of correct process operation the majority of the data points fall within the 95% confidence limit of 
the model which is denoted by the ellipse figure 3.1 and is based on the first two principal 
components. In case of a disruption in the process operation, data points will deviate from the 
data points for correct process operation. For a given data point, this variation can either lead to 
an excessive error contribution to the principal component model or an excessive variation inside 
the variable measurement. The error contribution (Qi) for each data point can be calculated from 
the square of the corresponding row in the residual matrix (E) denoted as ei. 
 
 T

iii eeQ =  (3.6) 
 
The total lack of fit statistic (Q-residual) is simply the sum of all Qi contributions. A large Qi 
contribution thus indicates that a data point lacks a good fit to the principal component model. 
The variation contribution (Ti

2) for each data point  can be calculated from the multiplication of 
the inversed diagonal matrix containing the eigenvalues (�-1) and the square of the corresponding 
row in the score vector (Tk) denoted as ti. 
 
 T

iii ttT 12 −= λ  (3.7) 
 
The sum of these contributions is known as the Hotelling T2 statistic and is a measure for the 
variation within the principal component model. A large Ti

2 contribution thus indicates that a data 
point has a fit to the principal component model but with unusual variation compared to the other 
data points.     
 
Data points with unusual variation that fall out of the 95% confidence limit are called outliers. 
Excessive outliers have to be removed as these points will distort the predictive capacity of the 
predictive models that will be developed. [12][24] Once it has been verified that the excessive 
outliers have been removed the data can be used for subsequent processing.          
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Although the 140 variables have been selected on the basis that these variables are likely to have 
an influence on the moisture content, one can, however, imagine that not all variables influence 
the moisture content equally. 
Another aspect that can not be observed from the dataset nor the principal component analysis is 
the time delay before a change in the process input has maximum impact on the chosen process 
output. Based on the process description it is imaginable that a change in the beginning of the 
process will not have an immediate effect on the moisture content. 
For the development of a predictive model with robust predictive capacities, it is required to have 
a quantitative representative to decide which variables influence the moisture content. In addition 
it is required to obtain a value for the time delay of each variable in the process, in order to 
synchronize the dataset.    
By calculating the cross-correlation coefficient (rxy) for each process input variable for k 
preceding measuring intervals (k = 0,1,2,…), both a quantitative representative for the importance 
of variables as well as an estimate of the time delay of each variable is obtained.  
 

 ( ) ( )
( ) ( )0 0 yyxx

xy
xy

cc

kc
kr =  (3.8) 
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The term cuy represents the cross-covariance coefficient between the process input variable and 
the process output and is a measure for the similarity between these variables. 
 

 ( ) ( )( )�
−

=
+ −−=

kN

t
kttxy yyxx

N
kc

1

1
 (3.9) 

 
Where x and y are respectively the mean of the process input variable and the process output, 

tx and kty + are respectively the measured value of the process input variable and the process 
output at time t, N is the total number of data points and k is the value of the preceding 
measurement interval.   
 
The terms cxx and cyy represent respectively the auto-covariance of the process input variable and 
the process output. These terms are used to normalize the cross-covariance coefficient in order to 
obtain the cross-correlation coefficient.   

 ( ) ( )�
=

−=
N

t
txx xx

N
c

1

21
0  (3.10) 

 

 ( ) ( )2

1

1
0

N

yy t
t

c y y
N =

= −�  (3.11) 

 
Due to the normalizing step with the auto-covariance terms, the cross-correlation coefficient will 
be a value in the range of -1 to 1. A cross-correlation coefficient close to -1 or 1 implies a strong 
similarity between the process input variable and the process output, where a coefficient of -1 
implies an opposite similarity. A cross-correlation coefficient close to 0 implies, on the other 
hand, that there is virtually no similarity between the process input variable and process output.  
For the determination of the process input variables that influence the moisture content, the above 
mentioned boundaries are not explicit enough. To elucidate this determination it is necessary to 
define a confidence limit below which no similarity between the process input variable and 
process output is assumed.  
The confidence limit is generally a value in the range of ±0.15 to ±0.30, depending on the size of 
the dataset used. [12] As the dataset used in this thesis are relatively large the confidence limit 
was set at ±0.25.  
By plotting the obtained cross-correlation versus the time delay values, a plot similar to the one in 
figure 3.2 is obtained. 
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Figure 3.2 Example of cross-correlation coefficient plot.  

 
From figure 3.2 it can be seen that numerically the maximum impact on the process output for 
this process input variable occurs after four measuring intervals. This implies that the 
measurements of this process input variable have to be shifted four measuring intervals forward 
in order to synchronize this process input variable with the process output. The preceding 
exercise can be repeated for each process input variable in order to obtain a synchronized dataset.  
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While the previous sections described data processing and data reduction techniques, this section 
will describe the technique used to develop a predictive model. 
Partial Least Squares (PLS) is a modelling technique that attempts to find factors (latent variables) 
that capture variance in the data while at the same time achieves maximum correlation between 
the output variable and input variables. 
Since the pioneering work of Wold in the late 1960s, numerous algorithms have been developed 
for the calculation of the PLS model. However, the original Non Iterative Partial Least Squares 
(NIPALS) algorithm is still one of commonly used algorithms. With PLS regression the 
prediction of the process output (Y) is described by a linear combination of the process input 
variables given in a data matrix X.    
First both auto-scaled X and Y are decomposed in a similar way as with PCA into a scores matrix 
(T and U respectively for X and Y) and loading matrix (P and Q respectively for X and Y) and a 
residual matrix (E and F respectively for X and Y), resulting in two so-called outer relations. 
 

 1 1 2 2
T T T

n n

T

X t p t p t p E

X TP E

= + + +

= +

�
 (3.12) 

 

 1 1 2 2
T T T

n n

T

Y u q u q u q F

Y UQ F

= + + +

= +

�
 (3.13) 

 
As the intention with PLS is to describe the process output in the best possible way (i.e. 
minimizing the norm of F) and thereby linking the process input variables to the process output in 
the best possible way it is necessary to define an additional, so-called, inner relation that performs 
this transition.  
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The simplest model that can perform this transition is a model in which the scores of X are linked 
to the scores of Y for every component with the use of a regression coefficient (b) as can be seen 
from figure 3.3.  
 

 
Figure 3.3 Example of simplest inner-relation in which the scores of X and Y are linked with a linear model. 

[6] 
 
This model can be described by the following equation.  
 
 hhh btu =  (3.14) 
 
The regression coefficient b is given by equation 3.15 where h represents a component number 
between 1 and n. 
 

 
h

T
h

h
T
h

h tt
tu

b =  (3.15) 

 
Combining equation 3.13 and 3.14 thus results in an equation for the prediction of Y. 
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The next objective is to find a pair of vectors (t and u) which on the one hand describe maximum 
covariance between the process input variables and the process output while on the other hand 
form mutual orthogonal pairs. Referring to PCA the major pair of vectors can be found on the 
basis of the first set of loading vectors (p1 and q1 respectively for X and Y). By projecting the X 
and Y data on the corresponding loading vector, the first set of score vectors (t1 and u1 
respectively for X and Y) is obtained. 
Although these score vectors will yield an equation for the prediction of Y with the use of the 
inner-relation, this prediction will not be the best possible. The latter is caused by the weak 
relation between the scores of X and Y which in turn is caused by the fact that X and Y are 
decomposed separately. A better relation is obtained when information of the scores is exchanged 
between each other. The latter can be achieved with the following algorithm.  
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Starting values comprise a score vector t_old which is any column of the matrix X and a 
score vector u which is any column of the matrix Y. 

1. u = y 
2. t_old = x1 

Calculations on the X matrix. 
3. w = (uT * X / (uT * u))T 
4. w = w / ||w|| 
5. t = X * w / (wT * w) 

Calculations on the Y matrix. 
in case of one Y variable 

6. q = 1 
Check for improvement. If the improvement is too little an additional step is required.  

7. if ||t – t_old|| > threshold 
t_old = t 
return to step 3 

If the calculated score vector is equal (within a specified error) to the preceding calculated 
score vector, the calculations can be stopped. An additional loop is required to transform the 
obtained score vector into an orthogonal score vector. 

8. p = (tT * X / (tT * t))T 
9. p = p / ||p|| 
10. t = t / ||p||  
11. w = w / ||p|| 

Determine regression coefficient bh 
12. bh = uh

T th / (th
T th) 

Calculate residuals of X and Y with the use of the inner relation 
13. X = X – thph

T 
14. Y = Y - thbhqh

T 
 
Each time the algorithm converges a T

hhqû  combination is obtained. This combination, or latent 

variable, accounts for a certain part in the prediction of Y. The corresponding T
hh pt combination 

accounts for a certain part of the X data used for this prediction. As these parts are already used 
by a latent variable, it is subtracted from the X and Y data before the algorithm is repeated. For 
example after the calculation of the first latent variable, the X and Y residuals become as shown in 
equations 3.17 and 3.18. 
 
 TptXX 111 −=  (3.17) 

 1 1 1

1 1 1 1

ˆ ˆ ˆ
ˆ ˆ

T

T

Y Y u q

Y Y t b q

= −

= −
 (3.18) 

 
In theory, the algorithm can be repeated until the number of latent variables equals to original 
number of variables (n). However, the calculations are generally terminated earlier because the 
lower order latent variables mostly describe noise present in the data thus making them irrelevant 
for the prediction of Y. 
A general rule of thumb is to terminate the calculations once the eigenvector of X becomes one or 
lower. An additional rule of thumb is to terminate the calculations once the cross validation error 
does not improve anymore by at least 2%.  
Once the PLS model has been developed, its robustness should be tested with the use of new data. 
[1][6][12]  
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Considering that papermaking involves a large number of processes of which little knowledge is 
available, it might be possible that these processes cannot be described by a linear modelling 
technique as PLS. To check whether non-linear relations form a serious threat, a second non-
linear modelling technique, on the basis of Least Squares Support Vector Machines (LSSVM), 
will be applied to the process data. This second technique is known as Robust LSSVM. 
With LSSVM the goal is to develop a function (equation 3.19) that relates the process input 
variables (x) to the process output (y). 
 
 ( )xfy
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For the estimation of the non-linear function, LSSVM first transforms this problem into a linear 
function in a high dimensional feature space (F) with the use of the regression function given in 
equation 3.21.  
 bxwxf T += )()(

���� ϕ           (3.21) 
 
In this function, w  is weight factor in the feature space F, b a bias term and ( )x

��ϕ  the non-linear 
mapping term that transform the input data points to corresponding data points in the feature 
space (F). 
 

 
Figure 3.4 Example of the transformation of a non-linear problem to a linear problem in the feature space 
(F) with the use of the mapping term �. Subsequently the problem is solved with linear regression in the 

feature space (F) which is equal to non-linear regression in the original space.  
 

Subsequently LSSVM defines an optimization problem (equation 3.22) subject to the equality 
constraints given in equation 3.23. 

 �
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 ii
T

i ebxwy ++= )(ϕ           (3.23) 
 
Where i is a value between 1 and m, e is the error variable and � is the regularization parameter 
that determines the trade-off between the fitting error minimization and smoothness of the 
estimated function. 
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To solve this optimization problem, Suykens et al. [20] stated that the Lagrange function with its 
optimality condition should give the desired result. 
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where �i are Lagrange multipliers. The optimality conditions for this Lagrange function are given 
by equation 3.25. 
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De Brabanter [5], Suykens et al. [20]and Vapnik [22] explained that after elimination of w and e 
the Lagrange function and its optimality conditions result in the linear system given in equation 
3.26. 
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where [ ]myyY ,,1 �= , [ ]1,11 �=m , [ ]mααα ,,1 �= , I is an m x m identity matrix and Ω is 

the inner product of the linear mapping ( ) ( )( )j
T

i xx
���� ϕϕ=Ω . 

Calculation of Ω can, however, be difficult if the dimension of the feature space (F) becomes very 
high. It would be advantageous if the inner product could be calculated directly from the input 
points. Such a direct calculation method is found in the kernel function method or kernel trick (K). 
 

 ( ) ( )j
T

iji xxxxK
������ ϕϕ=),(           (3.27) 

 
 
The advantage of using a kernel function is that it is not required to know the mapping. However, 
it is required, that for a particular function, to be used as a kernel function a feature space exists. 
It was found that when a function satisfies Mercer conditions, it can be regarded as a kernel 
function. [4] The commonly used kernel function for LSSVM is the Radial Basis kernel Function 
(RBF) as LSSVM is generally used as a non-linear modelling technique.  
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When the kernel trick is applied to the LSSVM optimization problem, the model for the function 
estimation, given in equation 3.29, is obtained. 

          ( ) ( )�
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1
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where � and b are obtained from solving the linear system given in equation 3.26.[5] 
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Although LSSVM can handle normal error distribution in process data, it is however not capable 
of dealing with outliers. As process data can contain outliers due to a failing or offline sensor, it 
might be possible that the LSSVM model give distorted results.  
This problem can be solved by removing the outliers from the process dataset; nevertheless this 
can be time consuming for larger datasets. Therefore it would be advantageous to develop a 
model that can deal with the outliers thereby retaining a good predictive quality of the model. 
Robust LSSVM is the extension for the LSSVM which is capable of dealing with outliers while 
retaining a good predictive quality of the model. The extension on the original LSSVM model is 
the introduction of an additional weighing factor (vi) which is calculated from the error variables 
(ei) of the LSSVM model. 
The consequence of this additional factor is that a new optimization problem arises (equation 3.32) 
subject to the equality constraints given in equation 3.33. (note: the symbol * denotes the 
unknown variable for the Robust LSSVM) 
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As a new optimization problem has been defined, this also results in a new Lagrange function 
with corresponding optimality conditions for solving this problem. 
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Ultimately the solution of the Lagrange function is given by equation 3.36, because of the 
additional weighing factor an additional diagonal matrix containing this weighing factor is 
obtained (equation 3.37). 
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The weighing factors (vi) are obtained from the error variables (ei) of the normal LSSVM model 
and the robust scale estimator (�). 
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The Inter Quartile Range (IQR) is defined as the difference between the 75th percentile (3rd 
quartile) and 25th percentile (1st quartile) of the error (ei) distribution. 
The weighing factor (vi) can now be determined based on the following criteria. 
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Where the constants c1 and c2 are typically chosen as c1 = 2.5 and c2 = 3 according to Suykens et 
al. [20] 
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At this point it is again possible to perform the kernel trick, thus resulting in the function 
estimation for the Robust LSSVM model, as given in equation 3.41.   
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where �* and b* are obtained from solving the linear system given in equation 3.37. 
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Figure 3.5 shows the results obtained in a comparative study on LSSVM and Robust LSSVM 
performed by Valyon. [21]    
 

 
Figure 3.5 Results of comparative study on LSSVM and Robust LSSVM performed by Valyon. [21] 

 
As can be observed from figure 3.5, the Robust LSSVM method was able to reduce the effect of 
outliers significantly in comparison with the LSSVM method. 
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In this chapter an overview will be given of the steps involved in the development of the predictive 
model for the paper quality. At first the findings on the condition of the process operation will be 
discussed on the basis of a principal component analysis for each dataset used. Subsequently the 
results of the different predictive models, developed in this thesis, will be discussed.  
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As described in chapter 3, raw data from any industrial process has to be pre-processed before it 
can be used for the development of a model.  
Principal component analysis was used in this thesis as the data pre-processing tool, after the data 
was first visually inspected for large deviations. Subsequently the condition of the process 
operation was determined on the basis of the score scatter plot of the first two components of the 
principal component analysis. 
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A visual inspection of dataset 1 showed that the measured variables x95 and x108 were offline 
during the production run and that the variables x59, x62, x71, x96, x120, x121, x129 and x133 
had a constant value.  
The variables x95 and x108 were removed from the dataset in order to prevent difficulties in the 
development of a predictive model. The variables with a constant value were left as is, since these 
variables will automatically be ignored in the development of predictive models due to the lack of 
variance. 
The principal component analysis resulted in a model with 17 principal components that 
described 71.9% of the variation present in the dataset. The score scatter plot of the first two 
principal components is given in figure 4.1. 
 

 
Figure 4.1 Score scatter plot of the first two principal components of the initial PCA model of dataset 1. 

 
What strikes the most in figure 4.1 is the sequence of outliers at right side of the figure. An 
examination of the contribution of the variables in this sequence is shown in figure 4.2. 
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Figure 4.2 Variable contribution plot of the outlier sequence. 

 
From figure 4.2 it can be observed that the outlier sequence is primarily influenced by variables 
in the refining section, variables of retention aids and variables in the press section.   
In consultation with Sappi, it was found that this deviation in process operation was caused by 
sheet breakage. With this additional information it becomes clear why the mentioned variables 
deviate. As a new sheet has to be made, after a sheet breakage, more new fibres a required thus 
explaining the deviation in the refiner variables. In order to prevent another sheet breakage, a 
more firm sheet it desired. One way to achieve this is the addition of larger quantities of retention 
aids. Finally the press section has to be adjusted to prevent another sheet breakage, thus these 
variables shown a different behaviour compared to the normal operating conditions.      
As this sequence will distort the predictive capacity of future models, the affected data was 
removed from the dataset. The consequence of this removal is that the principal component 
analysis has to be repeated. The new analysis resulted in a model with 18 principal components 
that described 0,704 of the variation present in the dataset. The corresponding score scatter plot of 
the first two principal components is shown in figure 4.3. 
 

 
Figure 4.3 Score scatter plot of the first two principal components of the second PCA model of dataset 1.  



 
 

 
 

24 

From figure 4.3 it can be observed that most of the data points now fall within the 95% 
confidence limit. A detailed inspection showed that the number of outliers present is in 
accordance with the five percent of acceptable outliers. However, one remark has to be made, i.e. 
the data points are not randomly distributed within the 95% confidence ellipse. The data points 
are actually distributed in six clusters of consecutive data. The clusters present in the dataset 
consist of the data points as given in table 4.1. 
 

Table 4.1 Distribution of the data points in the cluster in dataset 1. 
Cluster Data points Period 

1 1 – 299 23-01-2010 17:01 – 23-01-2010 21:59 
2 300 – 350 23-01-2010 22:00 – 23-01-2010 22:50 
3 351 – 379 23-01-2010 22:51 – 23-01-2010 23:19 
4 471 – 579 24-01-2010 00:51 – 24-01-2010 02:39 
5 580 – 1199 24-01-2010 02:40 – 24-01-2010 12:59 
6 1200 - 1260 24-01-2010 13:00 – 24-01-2010 14:00 

 
In order to determine the cause of the clustering, the contribution of the variables in each cluster 
was determined. The result is shown in figure 4.4. 
 

 
Figure 4.4 Variable contribution in each cluster in dataset 1. 

 
From figure 4.4 it can be observed that most deviations in variable contribution exist in cluster 1, 
3 and 6. Furthermore it can be observed that most deviations occur in the section of the variables 
x5 to x40 and in the section of variables x60 to x90. From Appendix I it can be found that these 
variables represent the refiner section and the additive section. When the contributions were 
analysed in more detail, it was found that most of the deviations in variable contribution were 
caused by variables of flows, temperatures and levels of storage tanks. For these variables it is not 
unusual to deviate over time, therefore it may be assumed that the data in this dataset represent 
normal process operation.  
The placement of the clusters in the score scatter as shown in figure 4.4 can most likely be 
explained by the sign of the sum of the deviation of each variable average in a cluster in relation 
to the corresponding variable average used in the auto-scaling. 
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It is assumed that based on the auto-scaling of the data the scores should be placed around the 
origin (0,0) in the score scatter plot. However if all variables in a cluster have a higher average 
value compared to the average value used in the auto-scaling, all variables will have a positive 
contribution. The latter will be translated into a shift to the right, of the cluster, in the score scatter 
plot. If all variables in a cluster have roughly the same average value as in the remaining clusters, 
the cluster will be placed around the origin. If all variables in a cluster have a lower average value 
than the value used on the auto-scaling, all variables contribute negatively which is translated into 
a shift to the left of the score scatter plot. For this dataset the sum of the cluster contributions are 
shown in table 4.2. 

Table 4.2 Cluster contributions for dataset 1. 
Cluster Sum of contribution 

1 3312 
2 3447 
3 1271 
4 -1616 
5 -1373 
6 -2878 

 
As can be observed from table 4.2 and figure 4.3, the sum of contribution is in accordance with 
the arrangement of the clusters in the score scatter plot (figure 4.30). The only deviating value is 
found for cluster 4. In figure 4.3 cluster 4 is positioned on the right side of the origin. Based on 
the assumption made previously, this should be translated into a positive sum of contribution. 
However from table 4.2 it can be observed that the sum of contribution for the fourth cluster has a 
negative value. The latter might be explained by the fact that this cluster still contains abnormal 
values of the variables due to the sheet breakage. Furthermore it can be observed from table 4.2 
that all sum of contribution have a relatively large value. This can be accounted to one variable 
that has a wide range of measurements. Because of that the overall average of this variable is 
small compared to the average value in the clusters. This again translated into a large sum of 
contribution.  
As the other datasets are analysed according to the same methodology used for dataset 1, the 
results of the analysis of these datasets have been combined in Appendix II.   
It was found that the data in all datasets is arranged in clusters of consecutive data. An analysis of 
the variable contributions in the clusters of the datasets, showed that the clusters in the datasets 
were formed due to changes in the average value of variables that represent temperatures, flows 
or valve positions. As these values of these variables are likely to change over time, it can be 
concluded that the datasets used in this thesis represent data from normal process operation. 
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After the dataset has been processed for the use in the development of a predictive model, it is 
necessary to divide it into three sections. The first category is training data. Training data is data 
for which the model is developed and should ideally span the full space of process operation. The 
second section is validation data. Validation data consist of similar data compared to the training 
data and is used to test the robustness of a developed model.   
The third section is validation test data. Validation test data consist of additional new data and is 
used to determine how the model responds to untrained data. 
Once the datasets have been categorized the final step is to determine the variables that affect the 
paper quality and the corresponding time delay. In this thesis a cross-correlation analysis, as 
described previously, was used for this determination.  
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For a larger reliability, both the training data and validation data were used in the cross-
correlation. The obtained results were subsequently incorporated into all datasets in order to 
obtain synchronized datasets. 
 
For a fair comparison of the quality of different models, it is necessary to use a quantitative 
measure. A commonly used quantitative measure for the quality of models is the coefficient of 
determination (R2).  
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where n is the number of data points, Yi is the actual measured paper quality, �i is the predicted 
paper quality and Y is the mean of the measured paper quality. 
The closer the coefficient of determination is to 1.0, the better the model can predict the measured 
values. 
In addition the mean square error (eMSE) will be used as an indicative measure to compare the 
robustness of the model with various validation and validation test datasets.  
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where n is the number of data points, Yi is the actual measured moisture content and �i is the 
predicted moisture content. The closer the value of the mean square error is to zero, the better the 
fitting between the actual measurements and the prediction.   
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The first predictive model in this thesis was developed using the PLS regression technique. This 
technique was preferred, because of its relative simplicity compared to robust LSSVM. The initial 
PLS model was developed with dataset 2 as training data, datasets 1 and 3 as validation data and 
datasets 5, 6 and 7 as validation test data. The cross-correlation analysis on the datasets 1, 2 and 3 
yielded 56 process input variables which were likely to affect the paper quality. The complete list 
of these process input variables together with the corresponding time delay can be found in 
appendix III.  
Once the obtained time delays were incorporated into each dataset, the PLS model was developed. 
Although the cross-correlation analysis yielded 56 process input variables which are likely to 
affect the paper quality, it might be possible that certain variables contain similar information.  
Another possibility is that variables, in reality, have little influence on the paper quality, but 
where selected as they, coincidentally and only in this case, had a strong correlation with the 
paper quality. 
By removing one variable at a time, while tracking the predictive capacity of the model, it was 
possible to determine the set of variables (table 4.3) that yielded the best predictive model based 
on the used datasets. 
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Table 4.3 Variables used for the development of the PLS model with cross-correlation time delay. 
 Variable name 
x93 Flow additive 
x98 Flow suspension to wire 
x103 Headbox consistency 
x106 Conductivity measurement headbox 
x111 Vacuum suction roll 
x115 Valve position vacuumbox  
x127 Valve position vacuumbox  
x128 Process value vacuumbox  

 
The resulting PLS model consisted of three latent variables which explained 74.8% of the 
variation in X and 89.5% of the variation in Y in the training data. An indicative parameter for the 
quality of the model can be found in the relation between the first X-score and the first Y-score. 
Ideally this relation should yield a linear plot which means that the X and Y scores are exchanged 
perfectly.  
 

 
Figure 4.5 Relation between first X-score and Y-score as an indicative parameter of the quality for the PLS 

model with cross-correlation time delay. 
 
As can be observed from figure 4.5 the relationship for this model does not yield a perfectly 
linear plot. However, the relationship can be denoted as being more linear than non-linear. The 
latter indicates that a model based on this data should have the ability to predict the paper quality 
to some extent. 
The prediction of the paper quality and the actual measurement of the paper quality for the 
training data is shown in figure 4.6. 
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Figure 4.6 Prediction and actual measurement of the paper quality for the training dataset performed with 

the PLS model with cross-correlation time delay. 
 
According to equation 4.1 the coefficient of determination is 0.8952. From figure 4.6, it can be 
observed that the model can predict the average trend in paper quality very well. The first test of 
the predictive capacity of the model was performed with the validation data. The results of this 
test are shown in the figures 4.7 and 4.8. 
 

 
Figure 4.7 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

with the PLS model with cross-correlation time delay. 
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Figure 4.8 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

with the PLS model with cross-correlation time delay. 
 

According to equation 4.4 the mean square error for validation data 1 is 0.0647, whereas the 
mean square error for validation data 3 is 0.0679. From the figures 4.7 and 4.8 it can be observed 
that the general trend in the paper quality is predicted well in both cases. However in both cases a 
slight offset between the actual measurement and the prediction of the paper quality is noticeable. 
The final test for this model was the test with validation test data, to check how the model 
responded to new untrained data. The results are shown in the figures 4.9 to 4.11. 
 

 
Figure 4.9 Prediction and actual measurement of the paper quality of the validation test dataset 5 performed 

with the PLS model with cross-correlation time delay. 
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Figure 4.10 Prediction and actual measurement of the paper quality of the validation test dataset 6 

performed with the PLS model with cross-correlation time delay. 
  

 
Figure 4.11 Prediction and actual measurement of the paper quality of the validation test dataset 7 

performed with the PLS model with cross-correlation time delay. 
 
According to equation 4.4 the mean square error for the validation test dataset 5, 6 and 7 is 
respectively 0.1132, 0.0859 and 0.6390. From the figures 4.9 to 4.11 it can be observed that the 
model is able to follow the general trend in the validation test up to a large extent. However also 
in this case the actual measurement and the prediction show a large offset, of which it is unknown 
what the cause is. 
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In a first attempt to find a possible cause for the offset, between the actual measurements and 
predictions observed in the results of the initial PLS model, a different set of time delays was 
used. The time delays from operating experience used for the development of the new model can 
be found in Appendix III. As can be observed from Appendix III a large offset exists between the 
time delays obtained from the cross-correlation analysis and the time delays from operating 
experience. This offset can probably be explained by the fact that the time delays obtained from 
the cross-correlation analysis, represent the mathematical time delay a certain variable to have 
maximum influence on the paper quality. However in reality this time delay can be influenced by 
limitations in the process, thereby deviating from the theoretical value.  
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In order to make a fair comparison with the model obtained with the cross-correlation time delays, 
an exact copy of that model was used for the development of this new model with time delays 
from operating experience.  
The PLS model thus obtained consisted of three latent variables which explained 74.8% of the 
variation in X and 88.3% of the variation in Y in the training data. The relation between the first 
X-score and first Y-score is shown in figure 4.12. 
 

 
Figure 4.12 Relation between first X-score and Y-score as an indicative parameter of the quality for the PLS 

model with time delays from operating experience. 
 

Again this relationship is not completely linear. But also in this case the relationship is more 
linear than non-linear, thus indicating that a model based on this data should have the ability to 
predict the paper quality. In comparison with the PLS model with cross-correlation time delay, 
the relationship is slightly deteriorated. However, this does not imply that the results of this 
model will be inferior to the results of the PLS model with cross-correlation time delay. 
The result of the new PLS model for the training data is shown in figure 4.13.  
 

 
Figure 4.13 Prediction and actual measurement of the paper quality for the training dataset performed with 

the PLS model with time delays from operating experience. 
 
According to equation 4.1 to coefficient of determination is 0.8832. From figure 4.13 it can be 
observed that this model can predict the general trend in the paper quality well. In comparison to 
figure 4.20, almost no differences are noticeable.  



 
 

 
 

32 

The latter implies that different time delays do not influence the predictive capacities of the 
model. Subsequently the obtained model was tested with the validation data. The results of this 
test are shown in the figures 4.14 and 4.15. 

 
Figure 4.14 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

with the PLS model with time delays from operating experience. 
 

 
Figure 4.15 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

with the PLS model with time delays from operating experience. 
 

According to equation 4.4 the mean square error for validation dataset 1 and 3 are respectively 
0.0900 and 0.0817. From figures 4.14 and 4.15 there is a slight offset noticeable between the 
measured and predicted values of the paper quality. A comparison between the figures 4.7, 4.8 
and the figures 4.14, 4.15 there is virtually no difference visible. 
Finally the model was tested using the validation test data. The results of this test are shown in 
the figures 4.16 to 4.18. 
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Figure 4.16 Prediction and actual measurement of the paper quality of the validation test dataset 5 

performed with the PLS model with time delays from operating experience 
 

 
Figure 4.17 Prediction and actual measurement of the paper quality of the validation test dataset 6 

performed with the PLS model with time delays from operating experience. 
 

 
Figure 4.18 Prediction and actual measurement of the paper quality of the validation test dataset 7 

performed with the PLS model with time delays from operating experience. 
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According to equation 4.4, the mean square error of validation test dataset 5, 6 and 7 are 
respectively 0.1500, 0.1352 and 0.7215. As expected the figures 4.16 to 4.18 show a large offset 
between the measured and predicted value of the paper quality. In addition there are virtually no 
differences visible between the figures 4.9 to 4.11 and the figures 4.16 to 4.18. From the 
preceding it can thus be concluded that the offset between the measured and predicted values of 
the paper quality is not affected by the time delay. In general it can be assumed that the overall 
predictive capacity of the PLS model is most likely not affected by the time delay at all.      
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In the previous sections it was found that a grade specific PLS model was capable of predicting 
the general trend in the paper quality. However the model showed an offset between the measured 
and predicted values of the paper quality with the validation data and validation test dat. The 
latter issue could not be solved with different time delays.  
A possible solution for the offset issue was found in the training data used for the initial models. 
It was mentioned that the training data should ideally span the full space of process operation. 
This criterion was not met for the initial model as the training data consisted of just one grade, 
whereas, the paper mill can produce three different grades. 
Therefore in this new approach, a training dataset was used which contained data from all three 
grades. For the training data the datasets 5, 6 and 7 were used, as these datasets contain data of all 
grades and should therefore span a large space of the process operation. The validation data 
consisted in this new approach of the datasets 1, 2 and 3. Finally dataset 4 was used as validation 
test data. A new cross-correlation analysis yielded 49 process input variables which are likely to 
have influence on the paper quality. The complete list of these process input variables together 
with the corresponding time delay can be found in Appendix IV. As it was concluded from the 
previous analysis that the time delays from operating experience had no influence on the 
predictive capacity of the model, it was decided to use the time delays obtained from the cross-
correlation analysis. 
For the development of this PLS model the same approach was used as for the initial grade-
specific PLS model. Ultimately the set of variables given in table 4.4 was obtained that yielded 
the best predictive model for the given datasets. 
 

Table 4.4 Variables used for the development of the multi-grade PLS model. 
 Variable name 
x69 Consistency tank  
x92 Flow additive 
x98 Flow suspension to wire 
x99 Flow excessive water from wire 
x109 Topformer consistency 
x111 Vacuum suction roll 
x128 Process value vacuumbox 

 
The set of variables given in table 4.4 yielded a PLS model of three latent variables that were able 
to explain 70.4% of the variation in X and 78.9% of the variation in Y in the training data. With 
the combination it should be possible to predict 78.9% of the variation in Y. The relationship 
between the first X-score and first Y-score of this model is shown in figure 4.19. 
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Figure 4.19 Relationship between first X-score and Y-score as an indicative parameter of the quality for the 

multi-grade PLS model. 
 
As can be observed from figure 4.19, this relationship is also not completely linear. But again the 
relationship is more linear than non-linear which indicates that a model based on this data should 
have the ability to predict the paper quality to some extent.  
The result of the new PLS model for the training data is shown in figure 4.20. 
 

 
Figure 4.20 Prediction and actual measurement of the paper quality for the training dataset performed with 

the multi-grade PLS model. 
 
According to equation 4.1 the coefficient of determination for this model is 0.7895. From figure 
4.20 it can be seen that this model is again capable of predicting the general trend in paper quality 
quite well. The results of the test with validation data are shown in the figures 4.21 to 4.23. 
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Figure 4.21 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

for the multi-grade PLS model. 
 

 
Figure 4.22 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the multi-grade PLS model. 
 

 
Figure 4.23 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

for the multi-grade PLS model. 
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The figures 4.21 to 4.23 showed that this model in combination with the validation data is also 
capable of predicting the general trend in the paper quality quite well. This is also noticeable from 
the mean square error values calculated using equation 4.4. For the validation datasets 1, 2 and 3 
the mean square error values are respectively 0.0195, 0.0843 and 0.5935. Although the model can 
predict the paper quality for the first validation dataset with virtually no offset, an offset is still 
noticeable between the measured and predicted values of the validation datasets 2 and 3. 
The result of the last test with the validation test data is shown in figure 4.24. 
 

 
Figure 4.24 Prediction and actual measurement of the paper quality of the validation test dataset 4 

performed for the multi-grade PLS model. 
 

Just like with the validation datasets 2 and 3 this validation test data shows an offset between the 
measured and the predicted values of the paper quality. According to equation 4.4 the mean 
square error for the validation test data is 1.0910. As can be observed form figure 4.24 a large 
offset exists between the measured and predicted values of the paper quality for the validation test 
data. Nevertheless the model is still able to predict the general trend of the paper quality quite 
well. A comparison of the grade specific PLS model and the multi-grade PLS model showed that 
the prediction with the multi-grade PLS yielded a more accurate prediction.  
From the preceding it can be concluded that a multi-grade PLS model is also capable of 
predicting the general trend in the paper quality quite good. However in most validation and 
validation test cases an offset between the measured and predicted values of the paper quality was 
still visible.   
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In a new attempt to find the cause of the offset found in the previous PLS models, the approach 
was to develop a Robust LSSVM model. With this approach it should be possible to determine 
whether the offset was caused by non-linearity in the process.  
In order to make a fair comparison with the multi-grade PLS model, the same variables, training 
dataset, validation datasets, validation test data and cross-correlation time delays as for the multi-
grade PLS model have been used for the development of the Robust LSSVM model. 
In this thesis, the LSSVMlab v. 1.5 Matlab toolbox developed by Suykens et al.[20] was used for 
the development of the Robust LSSVM model. 
Besides the training dataset and the variables, the Robust LSSVM model requires two additional 
parameters, i.e. gam and sig2. The parameter, gam, represents a regularization that determines the 
ratio between function smoothness and error minimization. The parameter, sig2, represents the 
kernel parameter.  
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The optimal parameters for the Robust LSSVM model in this thesis have been determined by trial 
and error. It was found that the optimal value of the gam parameter was 4 and that the optimal 
value of the sig2 parameter was 4000. 
The obtained result for the training data of the developed Robust LSSVM model is shown in 
figure 4.25. 
 

 
Figure 4.25 Prediction and actual measurement of the paper quality of the training data for the Robust 

LSSVM model. 
 
According to equation 4.1 the coefficient of determination of this model is 0.7678. When the 
figures 4.20 and 4.25 are compared, there are virtually no differences visible. This can imply that 
the offset found in with the PLS models is not caused by non-linear relationships in the process. 
However the latter assumption can only be tested with the use of the validation data and 
validation test data. The results of the validation data are shown in the figures 4.26 to 4.28. 
 

 
Figure 4.26 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

for the Robust LSSVM model. 
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Figure 4.27 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the Robust LSSVM model. 
 

 
Figure 4.28 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

for the Robust LSSVM model. 
 
According to equation 4.4 the mean square error for the validation datasets 1, 2 and 3 is 
respectively 0.1872, 0.1331 and 0.8105. When the figures 4.21 to 4.23 are compared to the 
figures 4.26 to 4.28 it can be observed that the results of the Robust LSSVM model show a larger 
offset between the measured and predicted values of the paper quality compared to the results of 
the PLS model. The latter again implies that the offset in the PLS models was not caused by non-
linearity in the process. The final test of the Robust LSSVM was performed with the validation 
test data. The result of this test is shown in figure 4.29. 
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Figure 4.29 Prediction and actual measurement of the paper quality of the validation test data performed for 

the Robust LSSVM model. 
  
According to equation 4.4 the mean square error for the validation test data is 1.0394. As 
expected the result of the validation test data shows virtually now difference compared to the 
result obtained with the multi-grade PLS model.  
From the preceding results it can be concluded that the offset between the measured and predicted 
values of the paper quality could not be reduced or removed by using a Robust LSSVM model. 
Therefore it is most likely that the offset found with the PLS model was not caused by non-linear 
relationships in the process. 
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As the Robust LSSVM model did not yield the desired result of an offset free prediction of the 
paper quality, it was necessary to find another solution for the offset issue. A plausible cause for 
the offset issue was found in the literature. Several researchers, amongst others Sharmin [16], Mu 
[11] and Zhang [25], encountered the same problem when developing PLS models for various 
applications, amongst others in the prediction of polymer quality. All researchers came to the 
same conclusion for the reason of the offset between the measured and predicted values for a PLS 
model. 
According to these researchers, the offset between the measured and predicted variables can be 
explained by the fact that when a PLS model is developed, the data for this model is scaled to unit 
variance using the average and standard deviation of each variable in that specific training dataset. 
New data is scaled to unit variance with the same averages and standard deviations of the training 
dataset, according to equation 4.5. 
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where y is the predicted y value, ty is the average value of y in the training dataset, 

tyσ is the 

standard deviation of y in the training dataset, 1b … nb  are the scaled model coefficients, 

1X … nX are the measured value of the variables in the validation dataset, tX ,1 … tnX ,  are the 

average value of the variables in the training dataset and 
tX ,1

σ …
tnX ,

σ are the standard deviation 

of the variables in the training dataset. 
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Upon rewriting equation 4.5, it can be observed that the equation actually exist of a constant part 
based on the actual measurements and a scaling term (bias) based on the model coefficients and 
the average value of the variables in the training dataset. 
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The values of the averages and/or standard deviations may however change over time due to a 
set-point change of a variable or the presence of a disturbance. As a result of this change the 
average values and/or the standard deviation of the training data and validation data may differ, 
which in turn results in the offset between the measured and predicted values The researchers 
state that if the prediction of Y was performed using equation 4.7 where the original average 
values have been replaced by the average value of the variables in the validation dataset, an offset 
between the measured and predicted values will not occur. 
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where vY  is the average value of y in validation dataset and vX ,1 … vnX ,  are the average value of 

the variables in the validation dataset. 
 
Although equation 4.7 can also be used with adjusted values for the standard deviation of the 
variables, it is assumed in this thesis that only the average value of the variables will change over 
time. The standard deviation is assumed to be constant based on the idea that for a given variable 
set-point the value may differ within a set of limits. As the magnitude of these limits is assumed 
to be independent of the variable set-point, the standard deviation will be more or less constant.    
 
The proposed solution of the researchers is to add an additional term to the original PLS model 
equation (equation 4.6) that compensates for an existing offset. For the calculation of this 
additional term (biascalc), three different methods are proposed in this thesis which will be 
discussed in the following sections based on the multi-grade PLS model in combination with 
validation dataset 2 used for the multi-grade PLS model. 
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The first calculation method is based on a relatively simple update mechanism. This method will 
calculate, at a certain time t, the difference between the previous measurement and the previous 
predicted value. 
 ( ) ( )ˆ1 1calcbias Y t Y t= − − −  (4.8) 

 
The thus obtained biascalc is subsequently added to the new prediction of Y (equation 4.9), thereby 
reducing the offset between the measured and predicted values of the paper quality with each 
calculation step. 
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The result for the multi-grade PLS model with validation dataset 2 and this calculation method is 
shown in figure 4.30. 
 

 
Figure 4.30 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the multi-grade PLS model in combination with a simple bias update. 
 

According to equation 4.4 the mean square error of validation dataset 2 in combination with the 
simple bias update is 0.058. In comparison with the original mean square error of 0.0843, it can 
be stated that this bias update has improved the prediction of the paper quality slightly. On the 
other hand when figure 4.30 is compared to figure 4.22 it can be observed that due to the bias 
update significantly more noise is present in the prediction of the paper quality. The latter can be 
explained by the fact that the prediction is updated too often. As every new measurement is 
directly processed into a new biascalc value there is no room for error smoothing. Therefore a large 
error in the measurement is directly translated into excessive noise in the prediction of the paper 
quality. 
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The second calculation method is an extension of the simple bias update. This second calculation 
method is still based on the previous measured and predicted value, only now a smoothing factor 
is introduced to reduce excessive noise in the prediction. At time t = 0 no value can be calculated 
for the bias as there is not yet a prediction, therefore it is assumed that the bias is 0 at that specific 
time. 
At a time t > 0 the error between the previous measured and predicted value can be determined. 
 

 ( ) ( )ˆ1 1error Y t Y t= − − −  (4.10) 

 
 Subsequently the biascalc can be determined using equation 4.11. 
 
 ( )1.0calc oldbias bias errorα α= ⋅ + − ⋅  (4.11) 

 
here � is the correction factor which can have a value between 0.0 and 1.0. A correction factor of 
0.0 means that the prediction is updated using the simple bias update method. The latter will thus 
result in significantly more noise in the prediction as can be seen from the previous section. On 
the other hand a correction factor of 1.0 means that the prediction is not adjusted at all.  
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The latter can be used if the offset is constant over a long period of time or when the correction 
factor is updated frequently by hand. However when looking at the figures 4.35 to 4.37 there is no 
constant offset visible. Therefore it is preferable to automatically update the biascalc term. In order 
to perform the latter, the correction factor has to have a value larger than 0.0 but smaller than 1.0. 
In this thesis a value of 0.9 was used for the correction factor. This value was chosen mainly 
because the data is updated with a relatively high frequency in this process. With this correction 
factor the bias is in fact averaged over ten measurements, which should be adequate for this 
process to obtain a prediction with less noise. The last unknown variable in equation 4.11 is the 
biasold term. This term represents the previous calculated bias term as calculated with equation 
4.11 for time t > 0. At time t = 0, the biasold term can be an estimate of the offset however in this 
thesis the initial biasold term is equal to 0. 
When this bias update is incorporated into the multi-grade PLS model and tested with validation 
dataset 2, the result as shown in figure 4.31 is obtained. 
 

 
    Figure 4.31  Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the multi-grade PLS model in combination with a bias update with correction factor. 
 
According to equation 4.4 the mean square error for the validation in figure 4.31 is 0.0054. In 
comparison with the original mean square error of 0.0843, the mean square error has become 
roughly ten times smaller. In addition from figure 4.31 it can be observed that with the correction 
factor applied the noise in the prediction virtually disappeared. Although the predicted values line 
up well with the measured values, one remark has to be made. Because of the averaging of the 
biascalc term, the predicted values are slightly out of sync with the measured values. The latter can 
be controlled with the value of the correction factor. Therefore it might be possible that a 
different correction factor will show an even better result. However the correction factor will 
always be a concession between fit and noise reduction. 
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The third calculation method is the more complex solution of the three methods suggested in this 
thesis. This calculation method is based on the claim that equation 4.7 is an improvement of the 
original PLS model equation. When a prediction is made using both equations a difference will 
exist between these predicted values. Mathematically this difference can be derived to a biascalc 
term and a Y∆ term based on a subtraction of both equations. 
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In order to make this solution work, it is required to define a method for the calculation of the 
average values of the validation data, or in a real application the new process data. The latter can 
be performed using a moving window average. With a moving window average, the average of a 
certain variable is determined on the basis of n previous measurements. At a certain time t the 
average value of a variable is determined according to equation 4.14. 
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At time t + 1 the last measured value is added to the range of values used, while the last 
value in the range of the previous calculation is removed. (equation 4.15) This way the 
average value is adjusted along with the frequency of new measurements. 
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With the moving window it is possible to obtain an accurate average value for the 
variables of the validation data with relatively little noise because of the averaging. The 
amount of noise present in the average value is mainly determined by the size of the 
moving window. The size required is generally determined on the frequency of new 
measurements in the process. As the frequency of the data used in this thesis is relatively 
high, a moving window of ten measurements was used. Ultimately the updated prediction 
of Y can be determined using equation 4.16. 
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With this bias update incorporated into the multi-grade PLS model, the result as shown in 
figure 4.32 is obtained for the validation dataset 2. 
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Figure 4.32 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the multi-grade PLS model in combination with a bias update with moving average. 
 
According to equation 4.4 the mean square error for this prediction is 0.0056. In comparison with 
the original mean square error of 0.0843, this update method also reduces the mean square error 
roughly by a factor ten. From figure 4.32 it can be observed that little noise is present in the 
prediction because of the averaging in the moving window. For this calculation method the size 
of the moving window is a concession between fit and noise reduction 
Comparing the result of this calculation method to the method with bias update with correction 
shows that these methods are comparable. As in this thesis the assumption is made that only the 
average value of the variables change, the bias update with correction factor is preferred because 
of its simplicity compared to the bias update with moving window. However in the case that a 
change in both the average values and the standard deviations of the variables is assumed, the 
bias update with moving window will probably be the better choice as that method can handle 
both deviations. 
From the preceding it can be concluded that the offset between the measured and predicted values 
with the multi-grade PLS model was caused by changes in the average values of the variables in 
the training dataset and validation datasets. Further it can be concluded that by the addition of a 
bias term to the original PLS model equation that compensates for this difference, the offset can 
be removed from the prediction without additional noise in the prediction.  
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Although the previous developed models showed good results for the prediction of the moisture 
content, all the models have two drawbacks. When looking at the grade-specific PLS model and 
the multi-grade model, the variables used fall within a relatively small range compared to the total 
number of variables available. When looking at the schematic process description, it can be 
observed that the variables used, are only found in the additive section and the paper machine 
section. Furthermore it can be observed that the variables used, are placed relatively close to the 
paper quality measurement. In a real life situation this would result in a too small time margin to 
take corrective actions in case of a deviation in the process operation. Nevertheless, because of 
the goodness of the fit of the models obtained, it is possible to use the models as a substitute 
measurement of the paper quality in case the real measurement of the paper quality fails. The 
second drawback is found in the nature of the variables used. Most of the variables used are 
controlled in an automated way. Due to the latter it is not surprising that these variables show a 
high correlation with the paper quality as this is the important factor of this control strategy.  
However such a control strategy makes it difficult to take a corrective action in case of a 
deviation in the process operation.  
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In order to overcome this issue, it was decided to remove this type of variables from the dataset 
and to end up with a dataset that only contains manual controllable variables or variables that 
represent a process value. As a consequence the list of variables in Appendix I is not valid 
anymore for this dataset. Therefore the new list of variables is shown in Appendix V. 
For the development of the new PLS model the datasets 5, 6 and 7 were again used as training 
data as the combination of these datasets span a large space of the process operation. For the 
validation data the datasets 1, 2, 3 and 4 were used. For the validation test data a new dataset will 
be used with process raw data that has only be synchronized. This validation test data contains 
data from a production in the period 21-02-2011 23:24 to 22-02-2011 14:30. During this 
production paper was produced with a gram weight of 90 g/m2 and the grades A, B and C. 
The cross-correlation analysis on the training data and validation data yielded 49 process input 
variables which are likely to have influence on the paper quality. The complete list of variables in 
combination with the time delays can be found in Appendix VI. The obtained process input 
variables were subsequently further analyzed for containing equal information or information that 
is not relevant for the predictive model. Ultimately this resulted in the set of process input 
variables as shown in table 4.5. 
 

Table 4.5 Variables used for the development of the cause-effect PLS model. 
 Variable name 
x5 Flow refiner  
x8 Refiner 2 loading 
x9 Refiner 3 loading 
x20 Flow refiners 
x25 Refiner 5 loading 
x49 Flow tank 723 
x52 Redox measurement tank 724 
x55 Flow recovered material 
x62 Flow binder additive 
x63 Flow dewatering additive 
x65 Flow binder additive 
x66 Flow flocculation additive 
x67 Flow retention additive 
x70 Incoming consistency suspension on wire 
x71 Flow suspension to wire 
x72 Flow excessive water from wire 
x75 Temperature tank 721 
x76 Headbox consistency 
x77 Headbox consistency (additives) 
x81 Topformer consistency 
x82 Topformer consistency (additives) 
x83 Dewatering vacuumsection 
x87 Process value vacuumbox 9 

 
With the variables from table 4.5 a PLS model was developed. This resulted in a model with 5 
latent variables which explained 77.9% of the variation in X and 91.4% of the variation in Y 
present in the training dataset. The relation between the first X-score and the first Y-score for this 
model is shown in figure 4.33. 
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Figure 4.33 Relationship between first X-score and Y-score as an indicative parameter of the quality for the 

cause-effect PLS model. 
 
As can be observed from figure 4.33 the relationship is more linear than non-linear. Based on the 
latter it can be assumed that this model has to ability to predict the paper quality. 
The result of the PLS model for the training dataset is shown in figure 4.34. 
 

 
Figure 4.34 Prediction and actual measurement of the paper quality of the training data for the cause-effect 

PLS model. 
  

According to equation 4.1 the coefficient of determination for this model is 0.9138. From figure 
4.34 it can be observed that the general trend in the paper quality is almost perfectly predicted for 
the training data. However the first test of the PLS model is the test with validation data. As it is 
expected from previous analysis that there is an offset noticeable between the predicted values 
and the measured values of the paper quality, the results will be displayed both for the prediction 
without bias update and with bias update. The results of this test are shown in the figures 4.35 to 
4.38. 
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Figure 4.35 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

for the cause-effect PLS model without and with bias update. 
 

 
Figure 4.36 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the cause-effect PLS model with and without bias update. 
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Figure 4.37 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

for the cause-effect PLS model with and without bias update. 
 

 
Figure 4.38 Prediction and actual measurement of the paper quality of the validation dataset 4 performed 

for the cause-effect PLS model with and without bias update. 
 
According to equation 4.4 the mean square error for the datasets 1, 2, 3 and 4 without bias update 
are respectively 4.2800, 0.3075, 0.0690 and 0.2644. For the prediction with bias update the mean 
square error is respectively 0.0845, 0.0134, 0.0082 and 0.0138. 
The results from the validation data show that the model is indeed capable of predicting the paper 
quality good up to a large extend. As expected the measured and predicted values show an offset, 
however, as can be seen this offset can be removed by the addition of the bias update mechanism 
to the prediction.  
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From the mean square error values it can be observed that due to the bias update, the values could 
be decreased by roughly a factor ten. The final test of the model is performed with the validation 
test data. The result of this test is shown in figure 4.39. 
 

 
Figure 4.39 Prediction and actual measurement of the paper quality of the validation test dataset performed 

for the cause-effect PLS model with and without bias update. 
 
According to equation 4.4 the mean square error for the validation test data without bias update 
mechanism is 43.9, whereas the mean square error for this data with bias update mechanism is 
0.4205. 
From figure 4.39 it can be observed that for the validation test data, the model is capable of 
predicting the general trend in the paper quality. There is, however, a deviant peak noticeable in 
the predicted values of the paper quality. The cause of this deviant peak is unknown. As the peak 
is partly removed with the bias update mechanism, it can be assumed that this peak is caused by 
deviant measurements of one of the variables used in the model.   
Although the obtained model shows good results and an accurate prediction of the paper quality 
apart form the possible addition of a bias update mechanism, the model is based on a relatively 
large number of process input variables. Therefore the importance of the used process input 
variables was further examined. This resulted in the figure as shown in figure 4.40. 
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Figure 4.40 Variable importance for the variables used in the cause-effect PLS model. 

 
In figure 4.40 the variables with a variable importance larger than 1, are considered important for 
the prediction of the paper quality. As can be observed from figure 4.40, this criterion is met for 
ten variables. With these important variables another PLS model was developed. This PLS model 
consisted of 4 latent variables that explained 82.8% of the variation in X and 86.8% of the 
variation in Y present in the training dataset. The thus obtained figure for the first X-score and 
first Y-score is shown in figure 4.41. 
 

 
Figure 4.41 Relationship between first X-score and Y-score as an indicative parameter of the quality for the 

second cause-effect PLS model. 
 
From figure 4.41 it can be observed that the relation between the first X-score and first Y-score is 
slightly deteriorated compared to the relation of the original cause effect PLS model. 
Nevertheless the obtained relation is still good and can still be denoted as being more linear than 
non-linear. Thus is can be assumed that this model can predict the paper quality up to a large 
extent. The result of the PLS model for the training data is shown in figure 4.42 
 



 
 

 
 

52 

 
Figure 4.42 Prediction and actual measurement of the paper quality of the training data for the second 

cause-effect PLS model. 
 
According to equation 4.1 the coefficient of determination for this model is 0.8684. In 
comparison with the original cause – effect PLS model the coefficient of determination is slightly 
deteriorated. This deterioration can also be observed when comparing figure 4.34 and figure 4.42.  
The results for the validation data of this model are shown in the figures 4.43 to 4.46. 
 

 
Figure 4.43 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

for the second cause-effect PLS model without and with bias update. 
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Figure 4.44 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the second cause-effect PLS model without and with bias update. 
 

 
Figure 4.45 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

for the second cause-effect PLS model without and with bias update. 
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Figure 4.46 Prediction and actual measurement of the paper quality of the validation dataset 4 performed 

for the second cause-effect PLS model without and with bias update. 
 
According to equation 4.4 the mean square error for the validation without bias update 
mechanism for the datasets 1, 2, 3 and 4 is respectively 5.4385, 0.0932, 0.1826 and 0.1831. For 
the validation with bias update mechanism the mean square error is respectively 0.0593, 0.0113, 
0.0109 and 0.0153. Comparing these obtained mean square error values with the mean square 
error values of the original cause-effect PLS model shows these values are comparable. The latter 
can also be observed when comparing the figures 4.35 to 4.38 and 4.43 to 4.46.  
One remark has to be made for validation dataset 3, which shows a deviant behaviour for the 
second cause-effect PLS model. This deviant behaviour is probably caused by a deviant 
measurement of one of the variables during the production of this dataset.  
This second cause-effect PLS model was also tested with the validation test data. The result of 
this test is shown in figure 4.47. 
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Figure 4.47 Prediction and actual measurement of the paper quality of the validation test dataset performed 

for the second cause-effect PLS model without and with bias update. 
 
According to equation 4.4 the mean square error for the validation test data for this model without 
bias update mechanism is 41.0983, whereas the mean square error for this data with bias update 
mechanism 0.4249 is. Again this result is comparable with the result obtained with the first cause-
effect PLS model. 
Based on the obtained results it can be concluded that it is possible to develop a cause-effect type 
PLS model only based on manually controllable variables and indicating process values. 
However, the only deviant variable in the list of variables is the process value of the vacuum box. 
A detailed examination of this variable, however, showed that the control mechanism of this 
variable did not work correctly during the production runs used in this thesis, as shown for the 
training data in figure 4.48. 
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Figure 4.48 Comparison of vacuum variable (x86) behaviour in combination with control variable of x86 

compared to the measurement of the paper quality.  
 
As can be observed from figure 4.48 the control variable has a constant value during the 
production runs, whereas variable x86 fluctuates according to the measurement of the paper 
quality. From this it can be concluded that the control variable does not operate correctly. In the 
actual control mechanism the control variable should fluctuate with the measurement of the paper 
quality and should the measurement of variable x86 be constant.  
If the assumption is made that this variable normally would not be incorporated in the model, as it 
is should have a constant measurement, and the other variables of the second cause-effect PLS 
model would remain the same a new model is obtained. This model consists of three latent 
variables which explained 80.7% of variation in X and 86.2% of the variation in Y. 
The relationship between the first X-score and Y-score for this model is shown in figure 4.49. 
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Figure 4.49 Relationship between first X-score and Y-score as an indicative parameter of the quality for the 

cause-effect PLS model with vacuum variable removed. 
 

 
As can be observed from figure 4.48 the relationship for this is model is still good compared to 
the relationship shown in figure 4.41. Furthermore the relationship is still more linear than non-
linear. The result of this PLS model for the training data is shown in figure 4.50. 
 

 
Figure 4.50 Prediction and actual measurement of the paper quality of the training for the cause-effect PLS 

model with vacuum variable removed. 
 
According to equation 4.1 the coefficient of determination for this model is 0.8623. Compared to 
the coefficient of determination obtained for the second cause-effect PLS model, this coefficient 
slightly deteriorated. However from a comparison of figure 4.42 and 4.50 this effect is not 
noticeable. The results obtained for the validation datasets is shown in the figures 4.51 to 4.54. 
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Figure 4.51 Prediction and actual measurement of the paper quality of the validation dataset 1 performed 

for the cause-effect PLS model with vacuum variable removed without and with bias update. 

 
Figure 4.52 Prediction and actual measurement of the paper quality of the validation dataset 2 performed 

for the cause-effect PLS model with vacuum variable removed without and with bias update. 
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Figure 4.53 Prediction and actual measurement of the paper quality of the validation dataset 3 performed 

for the cause-effect PLS model with vacuum variable removed without and with bias update. 
 

 
Figure 4.54 Prediction and actual measurement of the paper quality of the validation dataset 4 performed 

for the cause-effect PLS model with vacuum variable removed without and with bias update. 
 
According to equation 4.4 the mean square error for the validation datasets 1, 2, 3 and 4 without 
bias update mechanism is respectively 4.6083, 0.0435, 0.2186 and 0.2668. The mean square error 
for these datasets with bias update mechanism is respectively 0.0565, 0.0091, 0.0092 and 0.0157. 
Compared to the results obtained for the second cause-effect PLS model, these results show a 
slight improvement. The latter can also be observed when comparing the figures 4.43 to 4.46 to 
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the figures 4.51 to 4.54.  The result of the final test of the model with the validation test data is 
shown in figure 4.55. 
 

 
Figure 4.55 Prediction and actual measurement of the paper quality of the validation test dataset performed 

for the cause-effect PLS model with vacuum variable removed without and with bias update. 
 

According to equation 4.4 the mean square error for the validation test data without bias update 
mechanism is 44.7151, whereas the mean square error for this data with bias update mechanism 
0.3949 is. The results obtained for the validation test data are slightly deteriorated compared to 
results obtained for the validation test data of the second cause-effect PLS model. 
However based on the obtained results for the PLS model with the vacuum variable removed it 
can be stated that it is likely that the vacuum variable does not belong in the predictive model.  
Nevertheless further research is required in order to prove this assumption.



 

 

 

+� )�	������	�
 
The research project described in this thesis was aimed on developing a predictive model for the 
paper quality in the Sappi paper mill in Nijmegen. It was found in the literature that controlling 
the paper quality is a common problem in paper mills, as the measurement is affected by a large 
dead time. This results in a situation in which it is unknown what exact type of product is 
produced. It would therefore be advantageous if this paper quality could be determined at an early 
stage of the production process. 
As it was found that additional real measurements was not an option due to a specific measuring 
requirement, the next best option was found in the development of a predictive model. 
 
As raw process data may contain deviant measurements and large deviations between the 
magnitudes of the measured variables, the process data had to be pre-processed in order to be 
used in the development of a predictive model. A useful pre-processing technique was found in a 
principal component analysis, as this analysis both check the data for inconsistencies as well as 
reducing the dimension of the data while retaining vital information. 
The principal component analysis for the data used in this thesis, showed that for each dataset, the 
data points were arranged in clusters of consecutive data. It was found that this arrangement was 
caused by variation of variables representing temperatures, flows or valve positions in the process. 
Therefore it could be concluded that all data used for the development of a predictive model 
represented normal operating data. 
 
Subsequently a partial least square regression was performed to develop an initial predictive 
model. The developed model showed, however, an offset between the measured values and the 
predicted values of the paper quality. In order to find the cause of this offset, different time delays 
for the variables were used, as well as a different training data set that covered a larger space of 
the production process, in addition, the non-linear Robust LSSVM regression technique was 
investigated. All these alternative approaches did not yield the desired result of the removal of the 
offset. The solution for the removal of offset was found in the literature. It was found that the 
offset was probably caused by a shift in the average value of the variables over time, which in this 
thesis was also found in the principal component analysis of the data used. 
The proposed solution consisted of an update mechanism that compensates for the offset present 
in the prediction. In this thesis it was found that a combination of a simple bias update based on 
the difference between the previous measurement and prediction corrected by a chosen correction 
factor was able to remove the offset from the prediction. 
A more detailed analysis of the PLS model obtained showed however that the model used a small 
range over variables close to the actual paper quality measurement. In a real life situation this 
would have the consequence that there is too little time to take a corrective action in case of a 
deviation in the process operation. Therefore a new approach was developed in which only 
manually controllable variables and important measured process values were incorporated in the 
datasets. 
This approach yielded a robust predictive PLS model with 4 latent variables that explained 82.8% 
of the variation in X and 86.8% of the variation in Y and showed even a good prediction for 
untrained data. However one remark has to be made regarding this model, i.e. one of the variables 
represents a process value of a vacuum box which was intended to be automatically controlled. 
However due to a failure in the control mechanism this control did not function during the 
production runs used in this thesis.  
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If the assumption was made that this variable normally would not be incorporated into the model, 
a new model was obtained. The results of this model showed that it is most likely that the vacuum 
variable should indeed not be incorporated into the model. However further research is required 
to prove this assumption. 
 
It should also be mentioned that the models developed in this thesis were only developed using 
data from production runs with the gram weight of 90 g/m2. Therefore the model obtained is in 
principle only valid for this gram weight. More research is required if the paper quality has to be 
predicted for other paper gram weights. 
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 Variable name 
y Paper quality 
x1 Gram weight 
x2 Grade 
x3 Consistency flow refiners 
x4 Flow refiner  
x5 Flow refiner  
x6 Level tank 703 
x7 Refiner 1 loading 
x8 Refiner 2 loading 
x9 Refiner 3 loading 
x10 Refiner 1 energy 
x11 Refiner 2 energy 
x12 Refiner 3 energy 
x13 Flow refiner 
x14 Flow refiner 
x15 Incoming pressure refiners 
x16 Outgoing pressure refiners 
x17 Incoming pressure refiner 1 
x18 Incoming pressure refiner 1 
x19 Outgoing pressure refiner 1 
x20 Incoming pressure refiner 2 
x21 Incoming pressure refiner 2 
x22 Outgoing pressure refiner 2 
x23 Outgoing pressure refiner 3 
x24 Incoming pressure refiner 3 
x25 Refiner 1 temperature 
x26 Refiner 2 temperature 
x27 Refiner 3 temperature 
x28 Refiner 1 loading 
x29 Refiner 2 loading 
x30 Refiner 3 loading 
x31 Level tank 702 
x32 Consistency flow refiners 
x33 Flow refiners 
x34 Level tank 704 
x35 Refiner 4 loading 
x36 Refiner 5 loading 
x37 Refiner 6 power 
x38 Refiner 7 power 
x39 Refiner 4 loading 
x40 Refiner 5 loading 
x41 Incoming pressure refiner 4 
x42 Incoming pressure refiner 4 
x43 Outgoing pressure refiner 4 
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x44 Incoming pressure refiner 5 
x45 Incoming pressure refiner 5 
x46 Outgoing pressure refiner 5 
x47 Incoming pressure refiners 
x48 Outgoing pressure refiners 
x49 Refiner 4 temperature 
x50 Refiner 5 temperature 
x51 Refiner 6 temperature 
x52 Refiner 7 temperature 
x53 Pressure after refiner 5 
x54 Pressure after refiner 4 
x55 Pressure after refiners 
x56 Flow tank 711 
x57 Consistency tank 711 
x58 Conductivity measurement tank 711 
x59 Redox measurement  tank 711 
x60 Flow tank 712 
x61 Consistency tank 712 
x62 Conductivity measurement tank 712 
x63 Redox measurement tank 712 
x64 Flow tank 713 
x65 Consistency tank 713 
x66 Conductivity measurement tank 713 
x67 Redox measurement tank 713 
x68 Flow tank 795 
x69 Consistency tank 795 
x70 Conductivity measurement tank 795 
x71 Redox measurement tank 795 
x72 Flow tank 796 
x73 Consistency tank 796 
x74 Conductivity measurement tank 796 
x75 Redox measurement tank 796 
x76 Flow tank 723 
x77 Consistency tank 723 
x78 Conductivity measurement tank 724 
x79 Redox measurement tank 724 
x80 Charge measurement tank 724 
x81 Flow material recovery 
x82 Flow recovered material 
x83 Consistency flow recovered material 
x84 Flow recovered material (storage) 
x85 Valve position tank 726 
x86 Flow fixation additive 
x87 Flow retention additive 
x88 Flow retention additive 
x89 Flow binder additive 
x90 Flow dewatering additive 
x91 Flow dilution water 
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x92 Flow binder additive 
x93 Flow flocculation additive 
x94 Flow retention additive 
x95 Consistency natural dewatering 
x96 Consistency natural dewatering (additives) 
x97 Incoming consistency suspension on wire 
x98 Flow suspension to wire 
x99 Flow excessive water from wire 
x100 Consistency natural dewatering (additives) 
x101 Consistency natural dewatering 
x102 Temperature tank 721 
x103 Headbox consistency 
x104 Headbox consistency (additives) 
x105 Speedratio 
x106 Conductivity measurement headbox 
x107 Redox measurement headbox 
x108 Topformer consistency 
x109 Topformer consistency (additives) 
x110 Dewatering vacuumsection 
x111 Vacuum suction roll 
x112 Process value vacuumbox 7 
x113 Valve position vacuumbox 7 
x114 Process value vacuumbox 8 
x115 Valve position vacuumbox 8 
x116 Process value vacuumbox 9 
x117 Valve position vacuumbox 9 
x118 Process value vacuumbox 10 
x119 Valve position vacuumbox 10 
x120 Process value vacuumbox 1 
x121 Valve position vacuumbox 1 
x122 Process value vacuumbox 2 
x123 Valve position vacuumbox 2 
x124 Process value vacuumbox 3 
x125 Valve position vacuumbox 3 
x126 Process value vacuumbox 4 
x127 Valve position vacuumbox 4 
x128 Process value vacuumbox 5 
x129 Valve position vacuumbox 5 
x130 Process value vacuumbox 6 
x131 Valve position vacuumbox 6 
x132 Process value vacuumbox 11 
x133 Valve position vacuumbox 11 
x134 Press dewatering 
x135 Press 4 dewatering 
x136 Machine speed 
x137 Press 1 dewatering 
x138 Press 2 dewatering 
x139 Press 3 dewatering 
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In the second dataset no variables were detected which were offline during the production run. 
The variables x62, x71, x96, x117, x120, x121 and x129 had a constant value during the run 
period. These variables were however left as is, since they will be automatically ignored in the 
development of a predictive model because of a lack of variance. The principal component 
analysis on this dataset yielded a model with 15 principal components that explained 71.4% of the 
variation present in the dataset. The score scatter plot of the first two principal components is 
shown in figure AII.1. 

 
Figure AII.5.1 Score scatter plot of the first two principal components of the PCA model of dataset 2. 

 
As can be observed from figure AII.1 most of the data points fall within the 95% confidence limit. 
A more detailed examination yielded that the number of outliers present, is in accordance with the 
five percent of acceptable outliers. Further it can be observed from figure AII.1, that the data is 
again distributed in cluster of consecutive data. An overview of the exact division of the data 
points in the clusters can be found in table AII.1. 
 

Table AII.1 Distribution of the data points in the cluster in dataset 2. 
Cluster Data points Period 

1 1 – 617 14-02-2010 12:00 – 14-02-2010 22:16 
2 618 – 640  14-02-2010 22:17 – 14-02-2010 22:39 
3 641 – 799  14-02-2010 22:40 – 15-02-2010 01:18  
4 800 – 1021  15-02-2010 01:19 – 15-02-2010 05:00 

 
In order to determine the cause of the clustering the contribution of the variables in each cluster 
was determined. This yielded the plot as shown in AII.2. 
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Figure AII.5.2 Variable contribution in each cluster in dataset 2. 

 
From figure AII.2 it can be observed that the major deviations in the variable contributions can be 
found at variables x60 and higher. From Appendix I it can be found that these variables represent 
the additive section and paper machine section. A more detailed analysis showed that the 
deviations were mainly caused by levels of storage tanks, additive flows and vacuum boxes valve 
positions. As it is likely that these values will change over time, it can be assumed that the data in 
this dataset represents normal process operation. For this the sum of the cluster contributions was 
also determined. This yielded the results as shown in table AII.2.  
 

 Table AII.2 Cluster contributions for dataset 2. 
Cluster Sum of contribution 

1 0,031 
2 0,165 
3 -0,482 
4 0,242 

 
From table AII.2 it can be observed that the results obtained are not completely in accordance 
with the results shown in figure AII.1. The sum of contribution for the second and forth cluster 
deviate from the placement in the score scatter plot. The cause of these deviations is not known 
and requires further investigation. 
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A visual inspection of dataset 3 showed that the variables x95 and x108 were offline during the 
run period. Furthermore it was found that the variables x59, x62, x63, x71, x96, x117, x120, x121 
and x129 had a constant value during the production run. Just as in dataset 1, the variables x95 
and x 108 were removed to prevent difficulties in the development of a predictive model. The 
performed principal component analysis yielded a model with 12 principal components that 
explained 70.3% of the variation present in the dataset. The score scatter plot of the first two 
components is shown in figure AII.3. 
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Figure AII.5.3 Score scatter plot of the first two principal components of the PCA model of dataset 3. 

 
As can be observed from figure AII.3 most data points fall within the 95% confidence limit. A 
more detailed examination shows that the number of outliers is higher than the acceptable five 
percent of outliers. The latter is however not considered as being problematic, because of the 
relatively small excess. For this dataset it can also be observed that the data is arranged in cluster 
of consecutive data points. The exact cluster arrangement is shown in table AII.3. 
 

Table AII.3 Distribution of the data points in the cluster in dataset 3. 
Cluster Data points Period 

1 1 – 121 20-02-2010 22:00 – 21-02-2010 00:00 
2 122 – 414  21-02-2010 00:01 – 21-02-2010 04:53 
3 415 – 513  21-02-2010 04:54 – 21-02-2010 06:32 
4 514 – 820  21-02-2010 06:33 – 21-02-2010 11:39 
5 821 – 1070  21-02-2010 11:40 – 21-02-2010 15:49 
6 1071 – 1441  21-02-2010 15:50 – 21-02-2010 22:00 

 
In order to find the cause of the clustering of the data points, the contribution of the variables in 
each cluster has been determined and is shown in figure AII.4. 
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Figure AII.5.4 Variable contribution in each cluster in dataset 3. 

 
From figure AII.4 it can be observed that most of the deviation in the contribution of the variables 
occurs between the clusters 1, 3 and 6. The major deviations are again found in the refiner section 
(variables x1 to x30), the additive section (variables x60 to x95) and the paper machine section 
(variables x100 to x121). As expected the deviations can be attributed to flows, temperatures and 
valve positions of the vacuum boxes. As it is expected that these variables show a variation over 
time, it can be concluded that the data in this dataset can be considered as normal process 
operation data. The results yielded for the sum of the cluster contributions are shown in table 
AII.4. 

Table AII.4 Cluster contributions for dataset 3. 
Cluster Sum of contribution 

1 -0,935 
2 4,610 
3 5,055 
4 3,077 
5 -6,239 
6 -3,027 

 
Comparing the result from figure AII.3 to the results from table AII.4 indicates that these results 
are in agreement. Thus it can be most likely assumed that the clusters in the data are formed by 
variations in the average values of the variables over time. 

�--��
 ��
�����
�
�
���
�


For dataset 4 it was found that the variables x59, x63, x80, x96, x120, x121 and x129 had a 
constant value during the production run. The principal component analysis on this dataset 
yielded a model with 13 principal components that described 72.5% of the variation present in the 
dataset. The score scatter plot of the first two components is shown in figure AII.5. 
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Figure AII.5.5 Score scatter plot of the first two principal components of the initial PCA model of dataset 4. 

 
As can be observed from figure AII.5 there is a sequence of outliers present in the dataset. A 
more detailed examination of the contribution of the variables in this sequence of outliers is 
shown in figure AII.6. 
 

 
Figure AII.5.6 Variable contribution plot of the outlier sequence. 

 
From figure AII.6 it can be observed that this sequence of outliers is mostly influenced by 
variables from the refiner section, as well as the additive section and vacuum section. When 
comparing figure AII.6 to figure 4.2, it can be concluded that the figures show strong similarities. 
Therefore it can be assumed that the sequence of outliers in this dataset is also caused by a sheet 
breakage. As this sequence of outliers will distort the predictive capacity of a predictive model, 
the sequence was removed from the dataset. Due to this change in dataset, a new principal 
component analysis had to be performed.  
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The new principal component analysis yielded a model with 13 principal components that 
explained 71.7% of the variation present in the modified dataset. The score scatter plot of the 
newly obtained model is shown in figure AII.7. 
 

 
Figure AII.5.7 Score scatter plot of the first two principal components of the second PCA model of dataset 

4. 
 

From figure AII.7 it can be observed that all data points now fall within the 95% confidence limit. 
However it can also be observed that the data is again arranged in clusters through the confidence 
ellipse. The clusters present in this dataset are shown in table AII.5. 
 

Table AII.5 Distribution of the data points in the cluster in dataset 4. 
Cluster Data points Period 

1 1 – 838 17-04-2010 14:00 – 18-04-2010 03:57 
2 839 – 1005 18-04-2010 03:58 – 18-04-2010 06:44 
3 1006 – 1481  18-04-2010 06:45 – 18-04-2010 14:40  
4 1482 – 1522  18-04-2010 14:41 – 18-04-2010 15:21 
5 1557 – 1633  18-04-2010 15:56 – 18-04-2010 17:12 
6 1634 – 1768  18-04-2010 17:13 – 18-04-2010 19:27 
7 1769 – 2461  18-04-2010 19:28 – 19-04-2010 07:00 

 
Also for this dataset a plot has been made of the contribution of the variables in each cluster. The 
thus obtained figure is shown in figure AII.8. 
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Figure AII.5.8 Variable contribution in each cluster in dataset 4. 

   
It can be observed from figure AII.8 that most of the deviation in the contribution of the variables 
can be found in the refiner section (variables x1 to x 30), the additive section (variables x60 to 
x95) and the paper machine section (variables x100 to x121). 
Just like the previous analyses, most of the deviations in contribution can be found in variables 
representing a flow, temperature, level of a storage tank or the valve position of the vacuum 
boxes. As it is likely that values of these types of variables change over time, it can be concluded 
that the data in this data represent normal process operation. 
The results of the sum of the cluster contribution for this dataset are shown in table AII.6. 
 

   Table AII.6 Distribution of the data points in the cluster in dataset 4. 
Cluster Sum of contribution 

1 1,949 
2 -0,421 
3 -0,960 
4 0,456 
5 -4,033 
6 -1,608 
7 1,949 

 
The result of the contribution of the clusters is mostly in accordance with the result shown in 
figure AII.7. The only deviant value is obtained for the fifth cluster. The latter can possibly be 
assigned as an effect from the sheet breakage prior to the period of the fifth cluster. Due to the 
sheet breakage, set-points for some of the variables might still be different in the fifth cluster in 
order to prevent another sheet breakage.  
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The inspection of dataset 5 showed that the variables x56, x96, x117, x120, x121 and x129 had a 
constant value during the production run. The principal component analysis on the dataset yielded 
a model with 12 principal components that explained 73.1% of the variation present in the dataset. 
The score scatter plot of the first two principal components of the model obtained is shown in 
figure AII.9. 
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Figure AII.5.9 Score scatter plot of the first two principal components of the second PCA model of dataset 

5. 
 

From figure AII.9 it can be observed that almost all data points fall within the 95% confidence 
limit. A more detailed examination showed that the number of outliers present falls within the 
limit of 5% of acceptable outliers. Furthermore it can be observed from figure AII.9 that the data 
in this dataset is also arranged in clusters of consecutive data. The structure of each cluster in this 
dataset is shown in table AII.7. 
 

Table AII.7 Distribution of the data points in the cluster in dataset 5. 
Cluster Data points Period 

1 1 – 108   26-04-2010 02:00 – 26-04-2010 03:47 
2 109 – 233  26-04-2010 03:48 – 26-04-2010 05:52 
3 234 – 327   26-04-2010 05:53 – 26-04-2010 07:26 
4 328 – 430  26-04-2010 07:27 – 26-04-2010 09:09 
5 431 – 640  26-04-2010 09:10 – 26-04-2010 12:39 
6 641 – 687  26-04-2010 12:40 – 26-04-2010 13:26 
7 688 – 777  26-04-2010 13:27 – 26-04-2010 14:56 
8 778 – 1099  26-04-2010 14:57 – 26-04-2010 20:18 

 
Figure AII.10 shows the result of the analysis of the contribution of the variables in each cluster. 
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Figure AII.5.10 Variable contribution in each cluster in dataset 5. 

 
It can be observed from figure AII.10 that for this dataset most of the deviation in the contribution 
of the variables can be found in the refiner section (variables x1 to x30), as well as the additive 
section (variables x60 to x 95) and the valve position of the vacuum boxes (variables x110 to 
x121). A more detailed examination yielded that most deviating variables represent flows or 
temperatures, it can therefore be concluded that the data in this dataset represents normal process 
operation.   
 

Table AII.8 Distribution of the data points in the cluster in dataset 5. 
Cluster Sum of contribution 

1 4,008 
2 1,428 
3 0,434 
4 -5,019 
5 -6,297 
6 -3,718 
7 5,174 
8 3,249 

 
From table AII.8 it can be observed that the sum of contribution is in accordance with the cluster 
arrangement as shown in figure AII.9. It can therefore be concluded that the different clusters are 
a result of changing averages in the dataset. 
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The visual inspection of dataset 6 yielded that the variables x96, x117, x120, x121 and x129 had a 
constant value during the production run. As this will not distort the development of a predictive 
model, the variables were left in the same state. The principal component analysis for this dataset 
yielded a model with 16 principal components which explained 72.1% of the variance present in 
the dataset. The score scatter plot for the first two principal components of this model is shown in 
figure AII.11. 
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Figure AII.5.11 Score scatter plot of the first two principal components of the second PCA model of dataset 

6. 
 
As can be observed from figure AII.11 most of the data points fall within the confidence limit of 
95%. The number of outliers present in the dataset is in accordance with the 5% of acceptable 
outliers, therefore no data points have to be removed. 
From figure AII.11 it can furthermore be observed that in this dataset the data points are also 
arranged in clusters of consecutive data. The actual arrangement of the data points in the clusters 
is shown in table AII.9. 
 

Table AII.9 Distribution of the data points in the cluster in dataset 6. 
Cluster Data points Period 

1 1 – 559  30-04-2010 14:00 – 30-04-2010 23:18  
2 560 – 711  30-04-2010 23:19 – 01-05-2010 01:50  
3 712 – 756  01-05-2010 01:51 – 30-04-2010 02:35 
4 757 – 943  01-05-2010 02:36 – 01-05-2010 05:42 
5 944 – 1099  01-05-2010 05:43 – 01-05-2010 08:18 

 
For this dataset the contribution of the variables in each cluster was also determined. The latter 
yielded the figure as shown in figure AII.12. 
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Figure AII.5.12 Variable contribution in each cluster in dataset 6. 

 
As can be observed from figure AII.12 most of the deviation in contribution of the variables can 
be found in cluster five. As can be expected from the previous analyses the deviation is primarily 
found in the additive section and especially in variables that represent a flow. As the value of 
these variables is likely to change over time, it can be concluded that the data in this dataset 
represent normal process operation.  
 

Table AII.10 Distribution of the data points in the cluster in dataset 6. 
Cluster Sum of contribution 

1 -1,559 
2 -0,147 
3 3,426 
4 2,215 
5 2,086 

 
As can be observed from table AII.10, the sum of contribution does not match with the cluster 
arrangement in figure AII.11. However a more detailed examination shows that the sum of 
contribution is actually mirrored with respect to the cluster arrangement in figure AII.11. 
Therefore it can assumed that the sum of contributions represents the clustering in figure AII.11 
only the values have to have the opposite sign, which can be translated in a 180º counter-
clockwise of figure AII.11. 
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The inspection of dataset 7 showed that the variable x95 was offline during the production run, 
whereas the variables x59, x96, x106, x117, x120, x121 and x129 had a constant value. As the 
variable x95 will distort the development of a predictive model, the variable was removed from 
the dataset. The subsequent performed principal component analysis yielded a model with 13 
principal component analysis which explained 73.9% of the variation present in the dataset. 
The score scatter plot for the first two principal components of the obtained model is shown in 
figure AII.13.  
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Figure AII.5.13 Score scatter plot of the first two principal components of the second PCA model of dataset 

7. 
 
From figure AII.13 it can be observed that most of the data points fall within the 95% confidence 
limit. A detailed examination yielded that the number of outliers present in the dataset is in 
accordance with the 5% limit of acceptable outliers. As expected, bearing in mind the results of 
the previous analyses, the data points in this dataset are arranged in clusters of consecutive data 
points. The actual arrangement of the data points for each cluster are shown in table AII.11. 
 

Table AII.11 Distribution of the data points in the cluster in dataset 7. 
Cluster Data points Period 

1 1 – 241  17-05-2010 14:00 – 17-05-2010 18:00 
2 242 – 529  17-05-2010 18:01 – 17-05-2010 22:48 
3 530 – 628  17-05-2010 22:49 – 18-05-2010 00:27 
4 629 – 699  18-05-2010 00:28 – 18-05-2010 01:38 
5 700 – 1058  18-05-2010 01:39 – 18-05-2010 07:37 
6 1059 – 1099  18-05-2010 07:38 – 18-05-2010 08:18 

 
The result of the variable contribution in each cluster for this dataset is shown in figure AII.14. 
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Figure AII.5.14 Variable contribution in each cluster in dataset 7. 

 
As can be observed from figure AII.14 most deviations in variable contribution can be found 
between the clusters 1, 3, 5 and 6. As expected from the previous analyses, most deviations occur 
in the refiner section, the additive section and the paper machine section. A detailed analysis of 
the deviations, showed that these are caused by variables that represent a temperature, flow, or 
valve position of a vacuum box. As these variables are likely to change, it can be concluded that 
the data in this dataset represent normal operating conditions. 
 

Table AII.12 Distribution of the data points in the cluster in dataset 6. 
Cluster Sum of contribution 

1 4,008 
2 1,428 
3 0,434 
4 -5,019 
5 -6,297 
6 -3,718 

 
The sum of contribution of the clusters, as shown in table AII.12, is in accordance with the 
arrangement if the clusters in figure AII.13. It can therefore be concluded that the different 
clusters are the result of changing average values in the dataset. 
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Variable name 
Time delay from 
cross-correlation  

analysis 

Time delay 
from operating 

experience 
y Paper quality   
x5 Flow refiners 5 20 
x8 Refiner 2 loading 5 20 
x9 Refiner 3 loading 7 20 
x14 Flow refiner 6 20 
x29 Refiner 2 loading 5 20 
x30 Refiner 3 loading 7 20 
x33 Flow refiners 6 20 
x35 Refiner 4 loading 4 20 
x36 Refiner 5 loading 4 20 
x39 Refiner 4 loading 4 20 
x40 Refiner 5 loading 4 20 
x57 Consistency tank 711 9 30 
x58 Conductivity tank 711 0 … 
x61 Consistency tank 712 0 30 
x66 Conductivity tank 713 0 … 
x67 Redox tank 713 0 … 
x68 Flow tank 795 1 30 
x69 Consistency tank 795 0 30 
x70 Conductivity tank 795 5 … 
x72 Flow tank 796 0 30 
x73 Consistency tank 796 0 30 
x74 Conductivity tank 796 3 … 
x75 Redox tank 796 2 … 
x76 Flow tank 723 1 20 
x79 Redox tank 724 0 25 
x82 Flow proptower 6 20 
x85 Valve position tank 726 7 … 
x86 Flow fixation aid 1 20 
x89 Flow binder 3 20 
x90 Flow retention aid 0 2 
x92 Flow binder 0 2 
x93 Flow flocculation aid 0 2 
x94 Flow retention aid 4 2 
x97 Consistency suspension 3 x 
x98 Flow suspension 2 2 
x99 Flow water 2 0 

x100 Consistency 2 x 
x101 Consistency 1 x 
x102 Temperature tank 721 0 0 
x103 Headbox consistency 1 x 
x104 Headbox consistency 0 x 
x106 Headbox conductivity 0 0 
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x107 Headbox redox 0 0 
x109 Topformer consistency 0 x 
x110 Autoslice water flow 3 0 
x111 Vacuum suction roll 2 0 
x113 Valve position vacuumbox 5 1 0 
x115 Valve position vacuumbox 6 0 0 
x116 Process value vacuumbox 7 2 0 
x125 Valve position vacuumbox 2 2 0 
x127 Valve position vacuumbox 3 2 0 
x128 Process value vacuumbox 1 0 0 
x131 Valve position vacuumbox 4 0 0 
x133 Valve position vacuumbox 9 0 0 
x134 Press dewatering 1 0 
x137 Press dewatering 4 0 
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 Variable name Time delay from cross-

correlation analysis 
y Paper quality  

x4 Flow refiner 5 
x5 Flow refiner 4 
x7 Refiner 1 loading  5 
x8 Refiner 2 loading  4 
x9 Refiner 3 loading  4 

x14 Flow refiner 5 
x28 Refiner 1 loading  5 
x29 Refiner 2 loading 4 
x30 Refiner 3 loading 4 
x33 Flow refiner 5 
x35 Refiner 4 loading 4 
x36 Refiner 5 loading 4 
x39 Refiner 4 loading 4 
x40 Refiner 5 loading 4 
x58 Conductivity tank 711 0 
x61 Consistency tank 712 0 
x63 Redox tank 712 0 
x66 Conductivity tank 713 0 
x68 Flow tank 795 1 
x69 Consistency tank 795 1 
x70 Conductivity tank 795 4 
x73 Consistency tank 796 1 
x74 Conductivity tank 796 3 
x75 Conductivity tank 724 3 
x79 Redox tank 724 0 
x82 Flow proptower 2 
x85 Valve position tank 726 4 
x89 Flow cationic starch 2 
x90 Flow retention aid 3 
x92 Flow chalk 2 
x94 Flow percol 4 
x97 Consistency suspension 2 
x98 Flow suspension 2 
x99 Flow water 1 
x102 Water temperature 0 
x103 Headbox consistency 3 
x108 Topformer consistency 0 
x109 Topformer consistency 0 
x110 Autoslice dewatering 5 
x111 Vacuum suction roll 2 
x113 Valve position vacuumbox 5 1 
x115 Valve position vacuumbox 6 0 
x116 Process value vacuumbox 7 3 
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x119 Valve position vacuumbox 8 0 
x125 Valve position vacuumbox 2 2 
x127 Valve position vacuumbox 3 3 
x128 Process value vacuumbox 1 1 
x131 Valve position vacuumbox 4 0 
x133 Valve position vacuumbox 9 3 
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 Variable name 
y Paper quality 
x1 Gram weight 
x2 Grade 
x3 Consistency flow refiners 
x4 Flow refiner  
x5 Flow refiner  
x6 Level tank 703 
x7 Refiner 1 loading 
x8 Refiner 2 loading 
x9 Refiner 3 loading 
x10 Refiner 1 energy 
x11 Refiner 2 energy 
x12 Refiner 3 energy 
x13 Flow refiner 
x14 Flow refiner 
x15 Refiner 1 loading 
x16 Refiner 2 loading 
x17 Refiner 3 loading 
x18 Level tank 702 
x19 Consistency flow refiners 
x20 Flow refiners 
x21 Level tank 704 
x22 Refiner 4 loading 
x23 Refiner 5 loading 
x24 Refiner 4 loading 
x25 Refiner 5 loading 
x26 Pressure after refiner 5 
x27 Pressure after refiner 4 
x28 Pressure after refiners 
x29 Flow tank 711 
x30 Consistency tank 711 
x31 Conductivity measurement tank 711 
x32 Redox measurement  tank 711 
x33 Flow tank 712 
x34 Consistency tank 712 
x35 Conductivity measurement tank 712 
x36 Redox measurement tank 712 
x37 Flow tank 713 
x38 Consistency tank 713 
x39 Conductivity measurement tank 713 
x40 Redox measurement tank 713 
x41 Flow tank 795 
x42 Consistency tank 795 
x43 Conductivity measurement tank 795 
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x44 Redox measurement tank 795 
x45 Flow tank 796 
x46 Consistency tank 796 
x47 Conductivity measurement tank 796 
x48 Redox measurement tank 796 
x49 Flow tank 723 
x50 Consistency tank 723 
x51 Conductivity measurement tank 724 
x52 Redox measurement tank 724 
x53 Charge measurement tank 724 
x54 Flow material recovery 
x55 Flow recovered material 
x56 Consistency flow recovered material 
x57 Flow recovered material (storage) 
x58 Valve position tank 726 
x59 Flow fixation additive 
x60 Flow retention additive 
x61 Flow retention additive 
x62 Flow binder additive 
x63 Flow dewatering additive 
x64 Flow dilution water 
x65 Flow binder additive 
x66 Flow flocculation additive 
x67 Flow retention additive 
x68 Consistency natural dewatering 
x69 Consistency natural dewatering (additives) 
x70 Incoming consistency suspension on wire 
x71 Flow suspension to wire 
x72 Flow excessive water from wire 
x73 Consistency natural dewatering (additives) 
x74 Consistency natural dewatering 
x75 Temperature tank 721 
x76 Headbox consistency 
x77 Headbox consistency (additives) 
x78 Speedratio 
x79 Conductivity measurement headbox 
x80 Redox measurement headbox 
x81 Topformer consistency 
x82 Topformer consistency (additives) 
x83 Dewatering vacuumsection 
x84 Vacuum suction roll 
x85 Process value vacuumbox 7 
x86 Process value vacuumbox 8 
x87 Process value vacuumbox 9 
x88 Process value vacuumbox 10 
x89 Process value vacuumbox 1 
x90 Process value vacuumbox 2 
x91 Process value vacuumbox 3 
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x92 Process value vacuumbox 4 
x93 Process value vacuumbox 5 
x94 Process value vacuumbox 6 
x95 Process value vacuumbox 11 
x96 Press dewatering 
x97 Press 4 dewatering 
x98 Machine speed 
x99 Press 1 dewatering 
x100 Press 2 dewatering 
x101 Press 3 dewatering 
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 Variable name Time delays from cross-

correlation analysis 
y Paper quality  
x4 Flow refiner  4 
x5 Flow refiner  3 
x7 Refiner 1 loading 5 
x8 Refiner 2 loading 3 
x9 Refiner 3 loading 4 

x13 Flow refiner 3 
x14 Flow refiner 4 
x15 Refiner 1 loading 5 
x16 Refiner 2 loading 3 
x17 Refiner 3 loading 4 
x20 Flow refiners 5 
x22 Refiner 4 loading 4 
x23 Refiner 5 loading 4 
x24 Refiner 4 loading 4 
x25 Refiner 5 loading 4 
x30 Consistency tank 711 9 
x31 Conductivity measurement tank 711 0 
x34 Consistency tank 712 0 
x36 Redox measurement tank 712 0 
x39 Conductivity measurement tank 713 0 
x41 Flow tank 795 1 
x42 Consistency tank 795 1 
x43 Conductivity measurement tank 795 4 
x46 Consistency tank 796 0 
x47 Conductivity measurement tank 796 3 
x48 Redox measurement tank 796 1 
x49 Flow tank 723 3 
x51 Conductivity measurement tank 712 3 
x52 Redox measurement tank 712 0 
x55 Flow recovered material 4 
x62 Flow binder additive 2 
x63 Flow dewatering additive 3 
x65 Flow binder additive 1 
x66 Flow flocculation additive 1 
x67 Flow retention additive 3 
x70 Incoming consistency suspension on wire 2 
x71 Flow suspension to wire 2 
x72 Flow excessive water from wire 1 
x75 Temperature tank 721 0 
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x76 Headbox consistency 1 
x77 Headbox consistency (additives) 0 
x81 Topformer consistency 1 
x82 Topformer consistency (additives) 2 
x83 Dewatering vacuumsection 3 
x84 Vacuum suction roll 2 
x87 Process value vacuumbox 9 3 
x93 Process value vacuumbox 5 1 
x96 Press dewatering 1 
x99 Press 1 dewatering 3 

 

 


