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Abstract. In this bachelor’s thesis, the j-invariant for elliptic curves over the field
of Puiseux series, P, will be discussed. For elliptic curves over any algebraically
closed field, for instance C or P, we have that elliptic curves have the same j-
invariant if and only if they are isomorphic to each other . Therefore every such
j-invariant ∈ P will correspond to a class of isomorphic elliptic curves. Katz,
Markwig and Markwig showed in [KMM00] that this j-invariant is related to the
cycle length in the tropical world. In this paper we shall show that for every j-
invariant we can find an elliptic curve and its corresponding tropical counterpart
such that they obey the above relation.

This tropical counterpart can be found by the tropicalisation process. In this
thesis we study the tropicalisation of a plane curve C over P. We take such a
curve C and then apply a logarithm map to every point in this curve. This will
result in the amoeba of C. This new object will contain several tentacles and an
eye. By scaling the logarithm map by a factor t, we can make these tentacles
and eyes arbitrarily thin in a limiting process. The limit version will be called the
tropicalisation of C.

This limit process can be generalised to any field k by means of a valuation.
This valuation is a mapping v : k −→ Q. In the limit process, the behaviour of the
logarithm is determined precisely by the valuation at every point. Thus we can
replace an analytic tool with a purely algebraic one, the valuation. The field of
Puiseux series has a natural valuation on it, which is a generalisation of the usual
degree of a polynomial.

Applying this to an elliptic curve over the field P, we obtain a piece-wise linear
curve known as the tropical elliptic curve. Most tropical elliptic curves will contain
a bounded complex, also known as a cycle. It can be shown that the length of such
a cycle is something that is shared by tropical elliptic curves which are related
by morphisms. We therefore introduce a new invariant for tropical elliptic curves:
jtrop.

Katz, Markwig and Markwig showed in [KMM00] that if we have an elliptic
curve with v(j) < 0, then under certain mild conditions v(j) will equal minus
the cycle length. We show in this paper that for every j-invariant we can find an
explicit elliptic curve with a tropicalisation having a cycle with length equal to
−v(j). That is, if v(j) < 0, then we can find an isomorphic elliptic curve with a
tropicalisation having a cycle with length equal to −v(j).
To show this we will use the method of reduction. The reduction of an elliptic
curve over P to the field C deletes all powers of t in the coefficients and points
(analogous to the reduction of an elliptic curve over Z to Zp). As in the analogous
case, this requires the equation to be a so-called minimal Weierstrass equation. We
show how to obtain such an equation and what properties these equations have.

Afterwards we perform the actual reduction, resulting in a curve over C. This
new curve might be singular over C however. An elliptic curve reducing to a
singular curve is said to have bad reduction. If it reduces to a non-singular curve
(which is then a smooth elliptic curve), we say that it has good reduction. These two
types of reduction can be related to the valuation of the j-invariant. A curve with
bad reduction will have v(j) < 0. To find a curve with a proper tropicalisation, we
take a curve with bad reduction and show that it has a cycle with length equal to
−v(j).
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1. Introduction

The aim of this bachelor’s thesis is to understand a connection between certain
algebraic varieties and their tropical counterparts. This connection may be vaguely
described by saying that we start with something in the ”normal” world (by which
we mean something which is well understood, i.e. elliptic curves) and then look
at what happens when we transfer this to the tropical world. This last world has
received increased attention over the last 10 years (over 200 articles public on arXiv),
for one due to its applications in various fields of mathematics. To mention a few:
algebraic geometry, mathematical physics, mathematical statistics and graph theory,
yet it also has many fruitful applications in more applied settings like biology and
genetics.

In this tropical world everything takes a piece-wise linear form. One can already
see why this is the case from the two operations on R we define for the tropical
world: ⊕ = min and � = +. Using these operations one can set up what is called
tropical geometry. For instance a tropical line will be the union of three (normal)
lines emanating from a certain point. These tropical lines behave as expected: two
tropical lines will always intersect in 1 point. In fact one can set up a tropical
analogue of Bézout’s Theorem. Another theorem that also holds in this tropical
setting is the Riemann-Roch theorem.

1.1. Tropicalisation. One can study this tropical world and its geometry for its
own intrinsic properties, which is already rewarding on its own. There is however
a deep connection between tropical geometry and geometry. Suppose that we start
with a field k. Every such field comes with a so-called valuation. This valuation can
be seen as a measuring tool, as it maps an element of the field to an element of Q.
Since any object in geometry is a set containing n-tuples of elements from the field
k, we can apply this valuation to every individual element. This yields a subset of
Qn, which can be completed (with respect to the basic Euclidean topology) to obtain
something in Rn. This is in fact (more or less) the tropicalisation of an algebraic
variety.

This tropicalisation can also be obtained in another way for curves over the field
of complex numbers (or more generally for the residue field corresponding to the
valuation). Take a curve with n coordinates in C. We can apply the usual (real)
logarithm on the modulus of every coordinate. This yields a picture in Rn which
is called the amoeba of the complex curve. The fact that this picture is called an
amoeba stems from the tentacle-shaped portions of the picture leading away from a
center body, known as the eye of the amoeba. The idea now is to artificially introduce
a parameter t to the complex curve so that we can take a limit. This limit will result
in reducing the area of the tentacles and the eye to zero. But it can be shown that in
this limit case, the logarithm is just equal to the valuation mentioned earlier. This
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valuation is however algebraic of nature, whereas the limit process is analytic. Since
we’re interested in algebraic curves, we proceed with the valuation.

1.2. Algebraic Geometry and Elliptic Curves. The algebraic objects in geome-
try that we alluded to are called algebraic varieties. We won’t give a precise definition
of algebraic varieties just yet, but basically they are the zero set of a collection of
polynomials. The study of these algebraic varieties is called algebraic geometry. This
field of mathematics can be seen as a mix of linear algebra and algebra: linear algebra
studies the set of solutions to multiple linear equations and algebra studies the set
of solutions to polynomial equations. Rather than finding all the solutions of given
equations (which can be hard or even impossible, an example of which is solving
the general quintic equation by radicals), one hopes to find more information about
the nature of these solutions by considering the geometry of the specific problem.
For instance vector spaces naturally arise from solving linear equations as the spaces
which are invariant under scaling and addition (a property which linear mappings
preserve).

An important problem in algebraic geometry is the classification of curves. A way
to do this is by means of the genus of a curve. For a curve over C the genus represents
the amount of ”holes” in the curve. So for instance a complex sphere has genus 0 and
a complex torus has genus 1. There is in fact a definition for the (geometric) genus of
a curve over arbitrary fields, which is harder to apply in practice. It is however still
an important classification tool: two isomorphic curves will have the same genus.
As a starting point, consider curves of genus 0. Curves of genus 0 are particularly
simple, since we can always find a rational parametrisation for these curves given any
particular solution. This technique was already known to Diophantus ±200 A.D. In
fact, he was the first one to try this technique on a projective curve of genus 1, which
is now called an elliptic curve. He found that he needed two rational solutions to
obtain another rational solution. This latter construction is now known to be equiv-
alent to the group law on elliptic curves. Our focus for the remainder of the paper
shall be on these elliptic curves.

As briefly mentioned in the previous paragraph, these elliptic curves have a group
law on them. This means that given two points P1 and P2, we can construct
P3 = P1 + P2 such that this operation satisfies all the properties necessary for a
group (moreover, we can find an identity element and inverses). This group opera-
tion gives the elliptic curve some more algebraic structure which can be exploited in
numerous ways.

Given this structure, we can look at the mappings preserving this structure, known
as isomorphisms. These isomorphisms relate one elliptic curve to another and ba-
sically represent the same elliptic curve (that is, the same structure). It turns out
that isomorphic elliptic curves are in fact related by one number: the j-invariant.
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As the name suggests, this number is invariant under any isomorphism used on the
elliptic curve. This also works the other way around: two elliptic curves with the
same j-invariant are isomorphic to each other over an algebraically closed field.

Our field of choice still has to be specified. In this paper we shall mainly use the
field of formal Puiseux series. This field is an extension of the normal polynomial
ring over the field of complex numbers. Instead of allowing only integer powers, one
can have rational powers in the indeterminate. This allows one to define a valuation
on these series: take the lowest power in the power series. So if we consider algebraic
varieties, or in particular elliptic curves, over the field of Puiseux series, we can trop-
icalise them using this map. This will yield what is known as tropical elliptic curves.

These curves can be studied in multiple ways, one of them being the pictorial
description as a subset of R2. This description requires you to solve several linear
systems for every curve, which can become cumbersome when dealing with variables
(in the coefficients) in your curve. We shall therefore adopt another way of describing
tropical curves: by the Newton subdivision. This method uses Newton polygons and
discrete geometry to quickly give the structure of a tropical curve.

1.3. Tropical j-invariants and reduction. The tools mentioned above allow us
to study the main subject of this bachelor’s thesis: tropical j-invariants. Having seen
that every elliptic curve has an invariant quantity called the j-invariant, one might
wonder if and how this quantity tropicalises. The resulting quantity is known as the
tropical j-invariant and may be described as follows. Every smooth elliptic curve
with a particular j-invariant has a bounded complex in R2. This bounded complex
is known as a cycle. To every such a cycle one can associate its length. This length
will be the tropical j-invariant.

However not all tropicalisations have a cycle. In fact, even taking the normal
reduced Weierstrass form of an elliptic curve will yield nothing. The key lies in
the xy-term, which is necessary for a tropical elliptic curve to have a cycle. This
already shows that the tropical j-invariant is not an invariant connected to the
usual isomorphisms. There is however a connection between normal j-invariants
and tropical j-invariants. Suppose we have an elliptic curve with valuation of the
j-invariant strictly smaller than zero. Assume also that the elliptic curve induces a
triangulisation in the Newton subdivision. It can be shown that −v(j) will be equal
to the cycle length in this case.

Our main goal in this paper will be showing that we can find a representative of
an elliptic curve (with the same j-invariant, valuation smaller than zero) such that
its tropicalisation has the correct cycle length. In order to find this curve we will use
the method of reduction. This method takes the elliptic curve and effectively cancels
out all the terms from the indeterminate t, thereby leaving an elliptic curve over C.
This cancelling out can also be seen as ”filling in t = 0”. Before we can cancel out
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these terms though, we have to make the corresponding equation minimal, which can
be seen as making all the powers in the indeterminate greater than zero (something
which certainly is necessary if we want to fill in t = 0).

Having found this minimal equation, we can apply the reduction mapping to obtain
a new elliptic curve over C. This curve may however be singular. The elliptic curve
is then said to have bad reduction. If it reduces to a non-singular elliptic curve it is
said to have good reduction. These two cases can be directly linked to the reduced
discriminant (in fact ∆̃ = 0 means we have bad reduction). With a little more effort,
one can show that these two cases can in fact be related to the valuation of the
j-invariant. So for curves with bad reduction we would have v(j) < 0. Note that this
is exactly the condition that is needed for a tropical elliptic curve to contain a cycle.

With this in mind, we proceed by taking a curve with bad reduction. By chosing
the correct isomorphism, we can obtain a new elliptic curve which will have the
correct cycle length. This result will be compared to that in [BPR11] and other
implications of these theorems will be considered as well.

2. Polynomial rings and Puiseux Series

Given any field or more generally any commutative ring R, its polynomial ring
R[X] is defined as

(1) R[X] =

{
n∑
i=0

aiX
n : ai ∈ R, n ∈ N

}
That is, it contains all algebraic expressions in the indeterminate X, as long as the
expressions used are finite. One of the main features this ring lacks is multiplicative
inverses. In this section we investigate how we can extend this polynomial ring such
that it does have inverses and other useful algebraic properties.
In this bachelor’s thesis we shall mainly be considered with objects over the field of
complex numbers C. Polynomials over this field have proven to be very useful in all
sorts of applications due to the analytic structure C is endowed with. As motivation
for the extensions made in the following sections, we shall quickly highlight the
notable features of various polynomials over C. As is known from complex function
theory, every holomorphic function on C can be represented as an infinite series.
In contrast, we have that differentiable functions over R can fail to have such a
representation.
There are however more functions that can locally be expanded as an infinite power
series. For instance, consider a function that is analytic on a neighbourhood except
at a countable amount of points, called poles. The set of these functions is called the
set of meromorphic functions on C. To account for the occuring poles, we have to
allow negative exponents in our polynomials. The resulting field is called the field of
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Laurent series. Every meromorphic function on C can then be expanded as follows:

(2) f(z) =
∞∑

k>−∞

ak(z − z0)k

2.1. Formal power series. Infinite sums are not allowed in polynomial rings how-
ever (by definition). In order to talk about infinite sums, we have to introduce formal
power series. Formal power series allow one to work with infinite series without re-
sorting to analysis. A formal power series associates an infinite list of coefficients
with an ”infinite polynomial”. This list can be algebraically manipulated as ex-
pected. When using manipulations on infinite series however, we should proceed
with caution. For instance, evaluating an infinite series at any point in C is not
allowed when considering these formal power series. Hence we shall mainly use their
associated lists.

We begin with describing polynomials with positive powers (hence we are working
over C[t]). Take a sequence of elements in C: {a0, a1...}. We set up a one-to-one
correspondence between these sequences and infinite polynomials as follows:

(3) {a0, a1...} −→
∞∑
k=0

akt
k

We denote the set of all these infinite polynomials by C[[t]]. Such infinite polyno-
mials can be added and multiplied by using the following rules

(4) {a0, a1....}+ {b0, b1...} = {a0 + b0, a1 + b1...}
and

(5) {a0, a1....} · {b0, b1...} = {a0 · b0, ...,
n∑
i=0

aibn−i, ...}

This simple algebraic form of infinite series might be deceiving at first. Normally,
infinite series can’t be defined without a metric or topology. Some infinite series
converge, some diverge and some even converge conditionally. Formal power series
however completely ignore these matters of convergence. A formal power series is just
an infinite list of elements. Whether it converges or not is considered unimportant
for the time being.
Note that every entry contains only a finite amount of normal operations in C, so
overall these new operations are well defined (an infinite amount of operations would
require some sort of topology). Additive inverses are as usual and all the other ring
properties follow as well.
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We now investigate whether we can find multiplicative inverses. If the lowest nonzero
coefficient of this polynomial is ai, we say that it has order i. Now suppose we take
a polynomial of order 0. This means that it has a constant leading term. We
now claim any polynomial of order 0 is invertible (with the unitary element being
(1, 0, 0, ...)). In fact, according to the definition of multiplication, the inverse can be
found recursively by the following rules:

• b0 = 1/a0
• b1 = − a1

a02

• bn = −(
∑n

i=1 aibn−i)/a0

From these formulae we immediately see that the condition ”f has order 0” is both a
necessary and sufficient condition for invertibility of an element in C[[t]]. Power series
in C[[t]] consequently do not always have inverses, which deprives this ring of the
epithet ”field”. Luckily, this minor difficulty can be overcome. Take any polynomial
f of order m > 0. Then we can write f as:

(6) f = tm · g

where g is of order 0. So g is already invertible. All that is needed now is to find
an inverse for tm, but this is exactly t−m in the field of Laurent series. Hence we
have found inverses for every polynomial of order m > 0. Analogously we can find
inverses for −m < 0 with m finite by noting the following:

(7) f = t−m · g

with g once again having valuation 0. We know that g has an inverse and that the
inverse of t−m is tm. Hence we have found an inverse for every element 6= 0 of C[[t]].
The construction above gives the quotient field of C[[t]]: C((t)). In fact, we have
shown that C[[t]][t−1] = C((t)).

2.2. Puiseux Series. This field C((t)) is called the field of formal Laurent series,
which we will call L for now to avoid cumbersome notation later on. This field is
again of characteristic zero (since C is of characteristic zero), but some properties are
not preserved. One of them being algebraic closedness. For instance the polynomial
f = X2 − t ∈ L[X] is irreducible over L[X]. In fact, all nth roots of t are absent in
this field. We can add these nth roots by extending the field L. For instance, if we
want the square root of t in our new field, we take the following field extension:

(8) L −→ L[X]/(X2 − t) := L(t1/2)
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The same procedure can be used for arbitrary nth roots of t. Now consider the
following chain of field extensions:

(9) L ⊂ L(t1/2) ⊂ L(t1/6) ⊂ ... ⊂ L(t1/n!) ⊂ ...

Each of these extensions can be naturally embedded in the next extension by
means of the identity map. Upon taking the infinite union, we obtain what is called
the field of Puiseux Series. This infinite union is also known as the direct limit of
this system. This new field contains all formal series with fractional powers. That
is, it contains tp/q and all combinations of these powers (where p, q ∈ Z), as long as
the denominators occurring in these series are bounded. We can write this field P
as:

(10) P := ∪∞n=1L((t1/n!))

where the double brackets are used to indicate we are still working with formal
power series. A word of caution is in order: we do not allow formal power series with
unbounded denominators. Consider the following sequence:

(11) {fn} = t−1 + t−1/2 + t−1/3...+ t−1/n

If we allow n to go to infinity, we obtain a series with fractional exponents which
is not a Puiseux series. This might suggest that the field of Puiseux series is not
complete (since we found a sequence ”converging” to something outside our field).
Note however that we cannot discuss convergence because we do not have a metric
on our field P (a particular metric using the valuation can be used to show that this
sequence is not a Cauchy sequence)

Having seen what does not constitute a Puiseux series, we now give several exam-
ples of proper Puiseux series:

• Any normal polynomial is again a Puiseux series, even when considering
infinite series that are bounded below.
• Any Laurent series is a Puiseux series, since we still have negative powers in
P .
• t−1/2 + t1/3 is a Puiseux series, since the powers of t are bounded.
• et := 1 + t+ t2/2 + ... is also a Puiseux series

2.3. Natural valuation. Any element of P has a lowest power of t (similar to the
case of the Laurent series). We can thus write an element as:

(12) f =
∑
i∈I

cit
pi/qi
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where qi is bounded below by some k. Since this k is finite, we can assign a number
to every element of the field P by saying:

(13) v(f) := min{pi/qi}
For f = 0 we define v(f) = ∞. This mapping v : P −→ Q ∪ {∞} is called the
natural valuation on P . Whenever we use the term “valuation” in the context of
Puiseux series, we mean the natural valuation. We defer our discussion of general
valuations till chapter 3.

For now, we would like to give several (obvious) properties of this valuation:

• v(x) =∞ ⇐⇒ x = 0
• v(x · y) = v(x) + v(y)
• v(x+ y) ≥ min{v(x), v(y)}

In fact, the last property (”triangle inequality”) can be made slightly stronger than
it is now:

Proposition 2.1. If v(x) 6= v(y) then v(x+ y) = min{v(x), v(y)}.

Proof. Suppose x =
∑

i∈I cit
pi/qi and y =

∑
i∈I dit

pi/qi . Since v(x) 6= v(y), we know
that one of them must have lower valuation. Without loss of generality, assume that
this is x. By termwise addition, we have that x + y =

∑
i∈I(ci + di)t

pi/qi . Now look
at the i0 where v(x) = pi0/qi0 . Then we have that di0 = 0, so that the ci0 6= 0 is the
lowest coefficient of x+ y. Therefore the valuation must be equal to v(x). �

Remark 2.2. When we defined the Puiseux series, we added a certain new polynomial
to the old polynomial ring. This old polynomial ring (or field in fact) also has a
valuation on it. Consider the ring of polynomial functions on C: C[t]. Once again,
we define the valuation of an element as the minimal power of t. We can extend this
to the ring of Laurent polynomials. These notions of valuations naturally extend to
the formal power series.

Remark 2.3. Let L be the field of formal Laurent series. Now consider the following
extension:

(14) L ⊂ L(t1/2)

The valuation on L extends to the field L(t1/2) by setting v(t1/2) = 1/2. In fact, for
every t1/n, we can set v(t1/n) = 1/n. Taking the infinite union leads to the same
valuation as the one we defined for the Puiseux series. The difference between these
constructions is that with this construction we see that every extension gives a so
called discrete valuation. This means that the valuation takes values in a subset of
Q. In fact, for a given Puiseux series, we have that the valuation of the series can
be given by a discrete valuation (since all powers are bounded).
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2.4. Reduction. In this section we quickly highlight the main ideas of reduction.
In section (3) these ideas will be made more precise using valuation rings and in
section (6.2) these ideas will be used on elliptic curves over P . The technique itself
will already be used in the upcoming proof of the algebraic closedness of P , which
is the reason we mention the method here.
As an example, consider first the ring Z. This is a principal ideal domain, which
means that every ideal can be generated by one element. For every ideal I = nZ,
we can define the following quotient ring: Z/nZ. All multiples of n in this ring are
modded out. This means that two elements are equal if and only if they differ a
multiple of n.
For any prime p, we have that the ideal pZ is a maximal ideal; there is no bigger
ideal containing this ideal other than the entire ring. Thus we have that the quotient
ring is a field. For any element n ∈ Z we can use the division algorithm to write:

n = pq + r

with r < q. The map sending an element n in Z to its remainder is called the
reduction map:

• φp : Z −→ Z
• n 7−→ r ∈ Z

This map is a surjective (ring)homomorphism. The kernel is exactly pZ.

Remark 2.4. This idea of reduction on Z can be generalised to Q. In fact, when we
define valuation rings we shall mainly work over fields.

We can repeat the same procedure for the field of complex Puiseux series (and
consequently also for the field of formal Laurent series). We know that the field of
complex Puiseux series P has a natural valuation on it. For a polynomial f ∈ P∗
with

f =
∑
i∈I

cit
pi/qi

it is defined as

v(f) := min{pi/qi}
Reducing over this field will be filling in t = 0. We shall therefore first need a ring
which contains all positive powers of t:

P+ := {f ∈ P : v(f) ≥ 0}
There is only one maximal ideal in this ring, namely all multiples of t:

M = {f ∈ P : v(f) > 0}
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We can now define reduction on P . As before it just the following mapping:

φ : P+ −→ C
f(t) 7−→ f(0)

The same can be done for the field of formal Laurent Series (with exactly the same
notation, only with a different valuation).

2.5. Algebraic Closedness. The reason we started adding roots of t to our field
was to solve new equations. The roots we added were more or less arbitrary, and one
might wonder whether we can solve anything a bit more complex, like Xn +X = t.
The solution of this problem lies in the algebraic closedness of P . This means that
every polynomial equation with coefficients in P has at least one solution in P . Or
equivalently: the only irreducible elements of P [X] are of degree 0 or 1. This last
characterisation will be used to prove that P is algebraically closed. Before we can
begin the proof however, we will need one result which is primarily known for its use
in p-adic analysis: Hensel’s Lemma.

Lemma 2.5. (Hensel’s Lemma) Let F be a monic polynomial in Y with coefficients
in C[[t]]. Suppose the associated reduced polynomial F0 ∈ C[Y ] factors as

F0 = g · h

for monic polynomials g, h ∈ C[Y ] that are coprime (that is, they have no common
factors). Then F factors as

F = G ·H
where G,H are monic polynomials in y with coefficients in C[[t]] such that G0 = g
and H0 = h.

Proof. We begin by adopting a special notation for F . Instead of grouping all the
coefficients belonging to a certain Y i, we write F as follows:

F =
∞∑
i=0

Fit
i

where all the Fi are polynomials in y containing no powers of t. Let the degree
of F be m (in other words, m is the highest power of y in all the Fi). Since F is
monic, we know that deg(F ) = deg(F0). We furthermore have that deg(Fi) < m by
definition. Let r = deg(g) and s = deg(h). We want to find

G =
∞∑
i=0

Git
i and H =

∞∑
i=0

Hit
i



TROPICAL ELLIPTIC CURVES AND j-INVARIANTS 15

such that G0 = g, H0 = h and Gi, Hi ∈ C[Y ] of degree < r (resp., < s) for i > 0.
And we want F to be factorised by these two, that is, we want F = GH.
The condition F = GH leads to a system of equations:

Fn =
∑
i+j=n

GiHj.

This should be compared to the multiplication of formal series as defined in section
(2.1). We shall show how to solve these equations by induction. For n = 0 we have
F0 = gh = G0H0 (which was in our hypothesis). Now suppose all the Gj and Hi

have already been found for i, j < n. The nth equation can be written as

G0Hn +H0Gn = Fn −
n−1∑
i=1

GiHn−i := Un

The sum in Un is up to n − 1, so we know that deg(Un) < m (by induction). To
complete the induction step, we have to show that we can solve this equation for Hn

and Gn such that these polynomials have degree < r, s respectively.
From our hypothesis, we know that G0 and H0 are coprime. This means that
gcd(G0, H0) = 1. We claim that the ideal generated by two coprime polynomials
is the entire ring. It is sufficient to prove that 1 ∈ k[y]. We know that k[y] is a
principal ideal domain, so the ideal (G0) + (H0) is generated by a single element of
k[y]. This element is of course the gcd (G0, H0). Therefore (G0) + (H0) = (1) = k[y].
But this also means that we can find P and Q such that:

PG0 +QH0 = Un

We now rewrite P in terms of H0 by means of the division algorithm:

P = H0S +R

for R, S ∈ k[y] with deg(R) < s. Set Hn = R and Gn = Q + G0S. These Hn and
Gn solve the equation G0Hn + H0Gn = Un. We only have to check that they’re of
the right degree. Hn has the right degree by definition. Now consider the equation
H0Gn = Un − G0Hn. We have that deg(H0Gn) < m (by definition of Un, G0 and
Hn). But deg(H0) = s and r + s = m so deg (Gn) < r as desired. By induction we
can conclude that such a G and H indeed exist. �

Applying this lemma to a pair of polynomials is sometimes referred to as the
”lifting” of the factorisation. Note that this result holds only for C((t)), the field of
formal Laurent series. The lemma can however also be used on Puiseux series after
some modifications. Having proved this lemma, we can now proceed with the proof
that P is algebraically closed.

Theorem 2.6. The field of complex Puiseux Series, P, is algebraically closed
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Proof. Let F (Y ) = Y n +
∑n−1

i=0 AiY
i ∈ P [Y ] be irreducible. Suppose that n ≥ 2. A

contradiction will prove the theorem. At the start we will assume that the variable
used for the Puiseux series is u. Halfway the proof we will switch back to the original
variable t.
By applying the Tschirnhaus transformation X ′ = (X − An−1/n) we can make the
n − 1 term zero. So suppose that An−1 = 0. Let aiu

ri be the initial term of every

Ai 6= 0 and let r = mini{
ri
i
}. We then of course have that

(15) ri − ir ≥ 0

with equality for at least one of the i. Now perform the following coordinate change:

urZ = Y

We then obtain the following equation:

F (Z) = unr(Zn + u−2rA2Z
n−2 + ...+ u−nrAn)

Thus we have split F (Z) in two parts. If we can find a nontrivial factorisation for
(Zn+u−2rA2Z

n−2 + ...+u−nrAn) then we’re done. Note that every term has positive
valuation. To see this, consider the initial term in front of every Zn−i:

u−iruri = uri−ir

But from the definition of r we have that ri ≥ ir (see equation (15)) so all terms will
have positive valuation.
We now wish to remove the denominators in every term of every Puiseux series Ai.
This can be accomplished by changing coordinates: u = tm where m is set as follows:

m = lcm{qi ∈ Z : ri =
pi
qi
}

The new form F (Z) takes after this transformation is:

F (Z, t) = tmnr(Zn +B2(t)Z
n−2 +B3(t)Z

n−3 + ...+Bn(t))

where all the Bi are polynomials in t. We furthermore have that at least one of the
Bi must have valuation 0 by definition of r. That is, one of the Bi must start with
a nonzero constant term. Now define

D(Z, t) = Zn +B2(t)Z
n−2 +B3(t)Z

n−3 + ...+Bn(t)

This is a monic polynomial in C((t))[Z]. We can reduce this polynomial to obtain
a polynomial in C[Z]:

D(Z, 0) = Zn +B2(0)Zn−2 +B3(0)Zn−3 + ...+Bn(0)
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One of the main properties of C is its algebraic closedness. That is, every poly-
nomial splits in linear factors. In this case D(Z, 0) would split in n factors. These
linear factors cannot all be the same. This is because the n− 1th term is zero and
at least one of the Bi is nonzero (because terms with valuation zero reduce to proper
complex numbers).
Now take all the linear factors corresponding to one zero as g and the rest as h. This
makes g and h coprime (they do not share any linear factors). We therefore have a
coprime factorisation over C[Z] which can be lifted to a factorisation of F (Z, t) using
Hensel’s Lemma. But this also means that F (Y ) is factorised, a contradiction to the
irreducibility of F (Y ). This completes the proof.

�
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3. Valuations

In this section we first give an approach to valuations that is slightly more abstract,
yet also more insightful. This approach does not use a mapping, but a ring. Such a
ring contains all the information needed for a valuation on general fields. Also, we
have that the definitions and notation used in these valuation rings are used later on
in this thesis. Afterwards we will relate these valuation rings to the valuations and
vice versa.

3.1. Valuation Rings. Suppose we have a base field K. We wish to put a measure
or valuation on a larger field: L. Every element x of L has an inverse in L. Therefore
every element of L divides every other element of L. This does not give any intuition
about whatever underlying structure L might have. We shall therefore try to find a
subring of L that exposes how the constituents of L fit together. These notions can
be made precise as follows:

Definition 3.1. A valuation ring is a subring O of a field L such that

(1) K ( O ( L (O should not be trivial)
(2) For every x ∈ L, (x 6= 0) we have that either x ∈ O or x−1 ∈ O (both is also

allowed)

Condition (2) ensures that the quotient field of this valuation ring is again the
entire field. Creating O is like having a rule on L: for every element x of L we take
either x or the inverse x−1. We cannot however just randomly choose one or the
other: we need our choices to be careful enough to allow a ring structure. But in the
end, we can be sure that every element of L has left at least a mark on O.

All the properties necessary for this set to be a ring are inherited from the field
structure. The only thing missing of course is the presence of an inverse for every
element of the set. Having found a subring of the field L, we can look for maximal
ideals in our subring. The answer turns out to be quite short: there is only one
maximal ideal in O.

Proposition 3.2. For every valuation ring, the set M = {x ∈ O : x−1 /∈ O} has
the following properties:

(1) M is an ideal in O
(2) M is a maximal ideal
(3) M is the unique maximal ideal of O

Proof. 1) First we show that M is closed under multiplication. Take m1 ∈ M and
x ∈ O. We wish to show that m1x is not invertible. Suppose that it is invertible.
Then we would have m1xz = zm1x = 1 for some z ∈ O. Call zx := y. Then y is an
inverse of m1 (we use commutativity here), a contradiction.



TROPICAL ELLIPTIC CURVES AND j-INVARIANTS 19

We now show that M is closed under addition. Take x, y ∈ M. We wish to show
that x+ y is not invertible in O. We know that both x and y are invertible in L, so
whenever we use the inverse notation for x and y we mean their inverses in L. Write
x + y = x(1 + x−1y) = y(1 + y−1x). We know that for x−1y and y−1x at least one
of these must be an element of O. Without loss of generality, suppose that this is
x−1y. Then we also have 1 + x−1y ∈ O. But M is closed under multiplication, so
x+ y = x(1 + x−1y) ∈M.
2) Suppose there is an N such that M ⊂ N ⊂ O. Then for every x ∈ N −M we
have that x−1 ∈ O, because otherwise we would have that M = N . Since N is an
ideal, we have that x · x−1 ∈ N . But this means that N = O. So M is a maximal
ideal of O.
3) Suppose there is another maximal ideal of O, call it N again. Then N must
contain an element that M does not contain (because otherwise N would not be
maximal). Suppose x ∈ N is such an element. By the definition of M, x must have
an inverse in O. Because N is an ideal, we have that x · x−1 ∈ N and therefore
N = O, contradicting maximality. �

Thus, for every valuation ring we have a unique maximal ideal. An important
property of maximal ideals is that their quotient ring is a field (this condition is
actually an if and only if). Now quotient out M as follows: O/M := k. This k is
called the residue field of the valuation ring. The field k is sometimes also called the
unit group of the ring O (since we deleted all the elements without any inverses in O).
Note also that for every valuation ring, we obtain exactly one reduction mapping.

3.2. Valuations. As said before, it is possible to give a definition of valuations using
these valuation rings. One could also start by defining valuations (as maps) first and
afterwards defining the corresponding valuation rings. We shall see how these two
definitions are connected shortly.

For any valuation ring, one can show (see [Bo81] for this) that there exists a
surjective group homomorphism v : L∗ −→ G (which is called the valuation), where
G is a totally ordered abelian group G. By totally ordered, we mean that we can
order the elements of our group similar to how we order points on a line. For instance
N, Z, Q and R are totally ordered. The group operation in the valuation ring is
multiplication, so we have the identity: v(xy) = v(x) + v(y). If you add the identity
v(0) = ∞ with ∞ + x = ∞ for every x ∈ G, then you obtain another definition of
valuation:

Definition 3.3 (Valuation). A map v : L→ G ∪ {∞} is called a valuation if

• v(a) =∞ if and only if a = 0
• v(ab) = v(a) + v(b)
• v(a+ b) ≥ min{v(a), v(b)}
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Let us prove a couple of very simple properties to get used to these new definitions:

Proposition 3.4. Let v : L −→ G ∪ {∞} be a valuation. Then we must have:

• v(1) = 0
• v(a) = v(−a)
• if v(a) < v(b), then v(a+ b) = v(a)

Proof. 1) For every element x, we know that v(x) = v(x · 1) = v(x) + v(1) which
yields v(1) = 0.
2) The result will follow from v(−a) = v(a) + v(−1) once we know that v(−1) = 0.
Consider 0 = v(1) = v(−1) + v(−1) = 2v(−1). Now G is a totally ordered group,
so it has no points of finite order. To see this for m = 2 (which can be extended
with induction), note that if 0 < 2a < a then −a < a < 0, a contradiction. Also
if a < 2a < 0 then 0 < a < −a, another contradiction. Therefore a = 0. And
consequently v(−1) = 0.
3) From 2) we know that v(a) = v((a+ b)− b) ≥ min{v(a+ b),−v(b)} = min{v(a+
b), v(b)}. But v(a) < v(b) so v(a) ≥ v(a+ b). We also know that v(a + b) ≥
min{v(a), v(b)} = v(a). Therefore v(a+ b) = v(a). �

Now that we know a little bit about valuations, we can start by finding the con-
nection back to valuation rings. This can be done by defining:

(16) O = {x ∈ K : v(x) ≥ 0}
You can show that this is a valuation ring by using the following identity: v(x·x−1) =
v(x) + v(x−1) = v(1) = 0. If x is such that v(x) < 0 then v(x−1) > 0 so x−1 ∈ O.

3.3. Examples. We now give a couple of examples of valuations (which also give
the corresponding valuation rings).

Example 3.5. (Trivial Valuation)
For every element x ∈ k∗: define v(x) = 0 and for x = 0 define v(x) =∞.

Example 3.6. Consider K = C((t)), the field of formal Laurent series over C. Then
we can define a valuation as in section 2.3. The corresponding valuation ring O
contains all power series with positive valuation and the maximal ideal contains all
power series with zeros at t = 0. The residue field k = O/M contains all constant
functions at t = 0.

Example 3.7. The field of Puiseux Series over C has the natural valuation introduced
in section 2.3. For every polynomial f ∈ P , it is defined as the minimum of all the
powers in f . So if

(17) f =
∞∑

k=k0

ckt
αk
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then

(18) v(f) := min
k
{αk}

We furthermore define v(0) = ∞. To see that the first property makes sense here,
suppose that v(f) = k for k large. This means that there are no powers of t lower
than k. So if we make k higher and higher, we obtain less powers of t. Therefore we
have that v(f) = ∞ implies f = 0 and vice versa. The second and third property
follow from the definitions of multiplication and addition on the field of Puiseux
series.
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4. Affine and Projective Algebraic Varieties

In this section we’ll give the definitions and the notation we will use for (normal)
affine and projective algebraic varieties. As mentioned before, these affine varieties
are basically just the zero set of a collection of polynomials. To study the geometry
of a variety, one studies the zero set in an algebraically closed field, like C. For
example, taking a polynomial in one variable of degree d, we know that it must
have d solutions over C (with multiplicities of course). We don’t always know an
explicit expression for these solutions (by Galois theory), but we know they must
exist. These types of results are exactly what one aspires to achieve using algebraic
geometry. In this section, we shall mainly study zero sets of polynomials in two
variables, but everything can be adopted to a more general setting. In section (7),
a similar notion will be developed for the tropical world. Many of the techniques
and ideas from algebraic geometry will have an equivalent form in tropical algebraic
geometry.

4.1. Affine and Projective space. Suppose we have a fixed algebraically closed
field k, like for instance C or P . We can define affine n-space over k as the set of all
n-tuples (a1, ..., an) of elements of k. This space is denoted as An(k). The base field
k shall occasionally be omitted unless it is deemed necessary.
Similarly we can define projective n-space over k: Pn(k). This time we take the set
of equivalence classes of (n+1)-tuples [a0, ..., an] ∈ kn+1 − {0̄} where 0̄ is the zero
vector. The equivalence relation is defined as follows: Suppose x, y ∈ Pn(k). Then
x ≡ y if and only if x = λy for some λ ∈ k − {0}. Here scalar multiplication is as
usual. Note that we use the round bracket notation for affine coordinates and the
square brackets for projective coordinates.

Remark 4.1. The beauty of working with equivalence classes is that we have more
freedom to look for particular solutions of problems. Suppose that we work over the
field Q (which is not algebraically closed but the same ideas are applicable). Suppose
that we want to find a solution of a particular problem in the projective n-space over
Q: Pn(Q). Since we are working in projective space, we can actually clear all the
terms in the denominators by choosing the right λ (take λ as the maximum of all the
terms in the denominators). This gives us a solution of the same problem (we assume
here that our problem is well defined in projective space, see projective varieties) but
with coordinates in Z! In fact, the method above leads to a solution [x0, ..., xn] with
xi ∈ Z and gcd(xi) = 1. So we see that in solving problems in projective space, one
can immediately assume that the solutions are in Z and have no common terms. In
fact, this technique is tacitly already used in most proofs that

√
2 is irrational.

. Having strayed a bit from our original path, we now return to projective space.
We give some intuition as to what projective space looks like for the field R. Suppose



TROPICAL ELLIPTIC CURVES AND j-INVARIANTS 23

Figure 1. The points of a projective singular curve projected on the
sphere

we have a set of points in R3. These can be seen as points in P2
R but we have to take

into account that certain points might be equivalent. Either way we can now project
every point (or: equivalence class) to the 1-sphere. This projection can be seen as
the act of finding a representative for every point such that this representative has
norm 1. Thus we see that points in P2

R can be described visually as points on the
1-sphere (this serves merely as a visual example, as this particular equivalence class
is completely arbitrary). In fact, we have a bent version of R2 projected onto the
1-sphere with one additional point: the point at infinity. We shall see this point
again when we consider elliptic curves.

The method above is a way to switch from projective space to affine space. There is
actually a more general way of switching between affine and projective spaces.

Suppose that we start with points in affine space: An. We can naturally embed
this space in projective space in the following way:

• φi : An −→ Pn

• (y1, ..., yn) 7−→ [y1, y2, ..., yi−1, 1, yi, ..., yn]

This map is however not a bijection since the point [y1, ..., yi−1, 0, yi, ..., yn] (for some
yj 6= 0) is not in the image of An under φi. The map is however bijective on its
image, which can be described as follows. Take the hyperplane

(19) Hi = {P = [x0, ..., xn] ∈ Pn : xi = 0}
and let Ui be the complement of Hi:
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(20) Ui = Pn −Hi

.
We can now define the inverse of φi as follows:

• φi−1 : Ui −→ An

• [x0, ..., xn] 7−→
(
x0
xi
,
x1
xi
, ...,

xi−1
xi

,
xi+1

xi
, ...,

xn
xi

)
So we can identify affine space An with Ui by using φi for some i.
To recapitulate, we have multiple copies of An in Pn by the embeddings given above.

That is, we can always represent parts of Pn by An but we need to ”glue” these
together to get the full picture.

4.2. Varieties. Having defined affine and projective space, we can now consider the
notion of varieties in these spaces. These varieties will be entirely algebraic of nature,
that is, they will be subsets defined as the zero set of one or more polynomial(s). The
study of varieties, or algebraic geometry bears many resemblances to manifold the-
ory. The latter theory however does not allow any singular points: all manifolds are
smooth. In algebraic geometry we do allow singularities, which more or less means
that we allow ”intersections” to occur in varieties. This will be made precise later
on. Throughout this section we will assume that the field k is algebraically closed.

4.3. Affine Varieties. As introduced in section (2), we can introduce polynomi-
als in one variable for any commutative ring. Continuing this construction for the
polynomial ring, we obtain the polynomial ring in n variables:

k[X] := k[X1, ..., Xn] = k[X1, ..., Xn−1][Xn]...

The elements of this ring will be interpreted as functions on the affine n-space by
defining f(P ) = f(a1, ..., an) ∈ A where P = (a1, ..., an) ∈ An.

Since k has a zero element, we can now talk about the set of zeros of a function
f : Z(f) = {P ∈ An|f(P ) = 0}. If we have a set T ⊂ k[X] of polynomials, then we
can also consider the zero set of all the polynomials in T :

Z(T ) = {P ∈ An | f(P ) = 0 for all f ∈ T}

Remark 4.2. If we let τ be the smallest ideal containing T (in other words: the ideal
generated by T ) then we have that Z(T ) = Z(τ). For ”⊇”, suppose that x ∈ Z(τ)
and x /∈ Z(T ). Then there exists an f ∈ T such that f(x) 6= 0. But f ∈ τ so
x /∈ Z(τ), a contradiction.
For the reverse inclusion, we note that the ideal is finitely generated by the Hilbert
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basis theorem (see [Gat03] or [Har77] for this theorem) , which tells us that any
element g ∈ τ can be written as

g = h1a1 + ...+ hrar

where ai can be chosen to be the elements of T (since τ is the smallest ideal). If
g(x) 6= 0 then we obtain a contradiction, since ai(x) = 0 from x ∈ Z(T ).

Since ideals play such an important role in algebraic geometry, we want to associate
an ideal to an arbitrary subset of An. We therefore define the following, known as
the ideal of Y:

I(Y ) = {f ∈ k[X] | f(y) = 0 for every y ∈ Y }
One can easily verify that this is indeed an ideal in k[X]. We can now start working
towards our definition of algebraic variety. We first give a preliminary definition,
which consequently has a different name.

Definition 4.3. If there exists a set T (or equivalently an ideal τ) such that X =
Z(T ), then we call X an algebraic set.

Example 4.4. Take f = y2 − x3 − Ax − B with A,B ∈ P . Then the zero set Z(f)
is called the affine form of an elliptic curve. We shall return to these particular
algebraic sets in section (5).

Example 4.5. Take f = yx. Then for k = C we obtain the following zero set:

(21) Z(f) = {(x, y) ∈ C2|x = 0 or y = 0}
This algebraic set can be written as a union of two algebraic subsets. We call an
algebraic set that can be written as the union of two interior sets reducible. If this
is not possible, then we call an algebraic set irreducible.

By definition, every algebraic set can be written as a union of these irreducible
algebraic sets. Hence these irreducibles can be seen as the building blocks of algebraic
sets. The following result should not come as a surprise:

Theorem 4.6. Suppose X is an algebraic set. Then X is irreducible if and only if
I(X) is a prime ideal.

Proof. The proof isn’t lengthy, but we do not include it here. It can be found in
[Gat06],[Har77] for instance. �

With this theorem in mind, we define affine varieties:

Definition 4.7. An affine variety is an irreducible algebraic set.
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Example 4.8. We see that the algebraic set corresponding to f = yx is not an
algebraic variety, since it can be written as the union of two algebraic sets.

Example 4.9. For f(x, y) = y2 − x3 −Ax−B we note that if we can prove that the
f is irreducible, then we automatically have that the set is a variety. This is because
k[X] is a unique factorisation domain, which tells us that the notions of prime ideal
and irreducibility coincide. We can write the polynomial x3 + Ax + B in terms of
its zeros. For a smooth elliptic curve there are three distinguished zeros. We then
apply the Eisenstein criterion with p = x− α where α is one of the roots. Thus f is
irreducible and thus (f) is a prime ideal, which makes the variety irreducible.

4.4. Projective Varieties. Let us try to do the same with projective varieties. We
start with projective n-space and the ring k[X]. If we now take the zero set of a
polynomial, we are in trouble. Take for instance the polynomial:

(22) f = Y 2 −X
We have that [1, 1] ∈ Z(f), yet [−1,−1] /∈ Z(f) even though these two points

belong to the same equivalence class! The solution to this problem lies in restrict-
ing the allowed polynomials. The ones we are looking for are the homogeneous
polynomials:

Definition 4.10. A polynomial f ∈ k[X] is homogeneous if f(λX) = λdf(X) for
all λ 6= 0 and some d. The d will be called the degree. Likewise an ideal is called
homogeneous if it is generated by homogeneous polynomials.

It is easy to see that the zero set of a homogeneous polynomial is well defined in
projective space. If we have X = λY for some λ then f(X) = 0 = f(λY ) = λdf(Y )
if and only if f(Y ) = 0 (since λ 6= 0).

We can now copy the definitions of algebraic sets and varieties:

Definition 4.11. Suppose that I is a homogeneous ideal in k[X]. A projective
algebraic set is then defined as:

VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I}

Definition 4.12. A projective algebraic set is a projective variety if its homoge-
neous ideal is a prime ideal.

Example 4.13. Let V be the projective algebraic set in P2 defined by:

X2 + Y 2 = Z2

This is the equation for Pythagorean triples. Its defining polynomial, f = X2 +Y 2−
Z2 is homogeneous, since f(λX, λY, λZ) = λ2f(X, Y, Z).
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Example 4.14. The polynomial f = Y 2 −X is not homogeneous since f(λX, λY ) =
λ2Y 2 − λX. We shall shortly see how to make this equation homogeneous though.

We now give a method of switching between affine varieties and projective vari-
eties. The difference between these two is that the first one use general polynomials,
whereas the second one uses homogeneous polynomials. Suppose first that we have a
projective variety V with homogeneous ideal I(V ). We now define the dehomogeni-
sation of a polynomial in k[X] with respect to some Xi. We perform a coordinate
change as follows:

[X0, ..., Xi, ..., Xn] 7−→
(
X0

Xi

,
X1

Xi

, ...,
Xi−1

Xi

,
Xi

Xi

,
Xi+1

Xi

, ...,
Xn

Xi

)
Instead of f [X0, ..., Xi, ...Xn] we then have f(Y1, ..., Yi−1, 1, Yi+1, ...Yn) where the

Yi are as in the transformation above.

Example 4.15. Let V be the projective variety in P2 defined by:

X2 + Y 2 = Z2

Then dehomogenising with respect to Z yields:

(X ′)2 + (Y ′)2 = 1

Where X ′ = X/Z and Y ′ = Y/Z. This is the equation of a circle with radius 1.
Notice that we have lost the point Z = 0 in the process of dehomogenising. If we
were working over the field of complex numbers, then [X : Y : Z] = [1, i, 0] would
be a point on the variety which would be lost in the process of dehomogenising. We
can however recover this point by dehomogenising with respect to another variable,
say X. We then obtain:

1 + (Y ′)2 = (Z ′)2

where Y ′ = Y/X and Z ′ = Z/X. Notice that the point [1, i, 0] is sent to (i, 0) by
the mapping. This is indeed a point on the affine variety. By choosing the right
coordinate one can always recover all the points on the projective variety by glueing
all the affine bits together.

We have found a way of getting an affine variety (or in fact multiple, one for
every coordinate) from a projective variety. We now construct a projective variety
for every affine variety. This is done by changing the defining polynomials of the
variety. This change is called the homogenisation of f with respect to Yi. Suppose
we have an affine variety V with ideal I(V ). For any f , we define a new f ′ which is
homogeneous:

f ′(Y0, ..., Yn) = Yi
df(

(
Y0
Yi
,
Y1
Xi

, ...,
Yi−1
Yi

,
Yi
Yi
,
Yi+1

Yi
, ...,

Yn
Yi

)
)



28 PAUL HELMINCK

Figure 2. A projective version of a nonsingular elliptic curve

where d is the lowest integer such that f ′ is again a polynomial.

Example 4.16. Earlier on we consider the non-homogeneous variety defined by:

Y 2 −X = 0

Homogenising yields:

Y 2 −XZ = 0

Example 4.17. An elliptic curve in (reduced) Weierstrass form is given in affine form
as:

Y 2 = X3 + AX +B

for some A and B (which satisfy some relation so that we do not obtain a singular
curve). This equation is not homogeneous, but we can homogenize it, which yields:

Y 2Z = X3 + AXZ2 +BZ3

We shall see more of these curves in section (5).

4.5. Nonsingularity. In this section we quickly define what it means for a point
on a (projective) plane curve to be (non)singular. In manifold theory smoothness is
characterised by means of the Jacobian matrix. We can do the same for varieties,
although we have to be careful with the definition of ”dimension”, which we will take
for granted for now. The field k is once again assumed to be algebraically closed.
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Smoothness of an object is usually measured in terms of differentiability. Differentia-
tion is however a notion taken from analysis. We can nonetheless define a derivative
for polynomials algebraically: there is no need for a metric. This derivative has
exactly the same form as the usual derivative and behaves in the same way as the
normal derivative. Hence we can write and manipulate partial derivatives etc. just
as we normally would. The following definition mimics that of manifold theory in
the sense that we define a point on a curve to be nonsingular if there exists a unique
tangent line at that point:

Definition 4.18. Let C be a plane curve, P ∈ C, and f ∈ k[X] a generator for I(V )
(the ideal of the curve C). Then C is nonsingular (or smooth) at P if the vector(

∂f

∂Xj

(P )

)
has rank 1. If C is nonsingular at every point, we say that C is nonsingular (or
smooth).

Remark 4.19. A Jacobian having rank 1 means that for at least one coordinate we
have:

∂f

∂Xi

(P ) 6= 0

Remark 4.20. For projective varieties we adopt the following definition: a point P on
a projective variety V is said to be nonsingular if all partial derivatives are nonzero
at that point P .

Example 4.21. Let V be the projective variety defined by:

Y 2Z = X3 + AXZ2 +BZ3

As mentioned before, this is an elliptic curve in reduced Weierstrass form. We shall
check that the point at infinity, P = [0, 1, 0], is nonsingular for every elliptic curve.
To that end, we compute:

∂f

∂Z
= Y 2 − 2AXZ + 3BZ2

which gives us
∂f

∂Z
(P ) = 1 6= 0 for every elliptic curve. Thus the point at infinity is

nonsingular for every elliptic curve.

4.6. Maps between Varieties. Having defined what affine and projective varieties
are, we should now say what maps we allow between two varieties. In fact, our goal
will be to define what an isomorphism should be. To that end we first define the
coordinate ring and function field of a variety. After that we can say what a regular
function is, which will lead to the notion of morphisms and isomorphisms.
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Suppose we have an affine variety V . As we saw earlier, we can find an ideal of
functions that vanish on V : I(V ). Because we defined varieties to be irreducible, we
know that the corresponding ideal must be a prime ideal. This also means that the
quotient ring k[X]/(I(V )) is a domain. This quotient ring is called the coordinate
ring of the variety V .

Definition 4.22. Let V be an affine variety. We then define the coordinate ring of
V to be K[V ] := k[X]/(I(V )).

Thus we see that two polynomials give rise to the same function on V iff they belong
to the same equivalence class of K[V ]. This also means that for every f ∈ K[V ] we
have a well defined function:

f : V −→ k

which is defined as evaluating f at the points on V . As mentioned before, this
coordinate ring is in fact a domain. This means that we can form its quotient field.
This field is known as the function field of the variety V :

Definition 4.23. Let V be an affine variety with coordinate ring K[V ] Then we
define the function field of V to be K(V ) (its quotient field).

By definition of quotient field, we can write any element of K(V ) as f
g

with f, g ∈
K[V ]. Thus we see that the function field contains all rational functions on the
variety V . If we have two varieties V1 ∈ kn1 and V2 ∈ kn2 , then we can define a
rational map by taking n2 of these rational functions. That is, φ is rational if it
can be written as:

φ = [f1, ..., fn2 ]

where fi ∈ K(V1). These rational functions may however be ill-defined at some
points of V . For every point P on V we can find a ring with functions that are well
defined at P , the local ring at P:

Definition 4.24. Let V be an affine variety with P ∈ V . We define the local ring
of V at P to be:

OP :=

{
f

g
; f, g ∈ K[X] and g(P ) 6= 0

}
⊂ K(X)

This should be thought of as all rational functions that are regular at P . As one
can check, this is a valuation ring in K(X). It has a maximal ideal, which is given
by:

MP :=

{
f

g
∈ Op : f(P ) = 0

}
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We can also obtain the ring of regular functions on V as follows:

OV :=
⋂
P∈V

OP

Every element of this ring defines a proper function f : OV −→ k.
Having seen what constitutes a regular function, we can now define what a mor-
phism is.

Definition 4.25. Let V1 ⊂ kn1 and V2 ⊂ kn2 be affine varieties. Let φ : V1 −→ V2 be
a rational map. φ will be called a morphism if for every regular function f ∈ K(V2)
we have that the map f ◦ φ is regular.

Remark 4.26. Note that if the rational map φ is regular everywhere on V1 then it is
automatically a morphism.

For projective varieties we give the following definition.

Definition 4.27. Let V1 and V2 ⊂ Pn be projective varieties. A rational map

φ = [f0, ..., fn] : V1 −→ V2

is regular at P if there is a function g ∈ k(V1) such that

• (i) gfi is regular at P for every i,
• (ii) there is some i for which (gfi)(P ) 6= 0.

If φ is regular at every point P ∈ V1 then we call it a morphism.

This g allows us to clear the denominators of a map locally. In fact, we have that
this projective morphism is a set of affine morphisms glued together. An example of
this will be given in the proof of the main theorem. Not surprisingly the definition
of a morphism leads to the definition of an isomorphism.

Definition 4.28. Suppose that φ is a morphism of two varieties V1 and V2. Then it
is an isomorphism if there exists a morphism ξ such that φ ◦ ξ = ξ ◦ φ = id.
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5. Elliptic Curves

In this section we define what an elliptic curve is. We define it as a smooth curve
having certain properties. We can associate an equation to this curve. This equation
is known as a Weierstrass equation. A curve with such an equation can have singu-
larities however. We introduce the discriminant as a quantity to check whether a
Weierstrass equation has a singularity. After this we will consider isomorphisms be-
tween two elliptic curves. This will lead to the definition of the j-invariant: a single
quantity which all isomorphic elliptic curves have in common. The isomorphism also
preserves a group operation on it in the usual sense. This group operation takes two
points on the elliptic curve and maps these to another point on the elliptic curve.
It allows us to talk about concepts like subgroups of the elliptic curve and points of
finite order (torsion points).

5.1. Elliptic Curves. We define an elliptic curve to be a smooth curve of genus
1 with a specified basepoint denoted by O. The (geometric) genus is an invariant
that is preserved by birational maps. We won’t give the exact definition of genus
here, but it can be shown using the Riemann-Roch theorem that every such elliptic
curve can be written as the zero locus in P2 of a cubic equation (and one additional
condition, see (5.1)).

This equation in P2 takes the following form:

(23) Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with O = [0, 1, 0] and a1, ..., a6 ∈ k. This equation is usually called the (projective)
Weierstrass equation of an elliptic curve. We shall however be mainly concerned
with elliptic curves given in affine Weierstrass form. The affine form of the equation
is obtained by setting x = X/Z and y = Y/Z, which yields:

(24) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Remark 5.1. Our definition of an elliptic curve assumes it is smooth. In fact, when-
ever we say ”elliptic curve” we shall assume that it is smooth. The corresponding
Weierstrass equation however can have singularities. There is a condition on this
Weierstrass equation which ensures that it is smooth (and thus an elliptic curve).
This condition is given by the discriminant. Note the subtle difference between
”elliptic curve” and ”Weierstrass equation”, the first always being smooth, whereas
the second can have singularities.

When working over a field of characteristic 6= 2, 3, we can greatly simplify this
form by applying two isomorphisms. The first one is more commonly known as
”completing the square”, where we send:

y 7−→ (y + a1x+ a3)/2
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Remark 5.2. Note that this is a regular map (since it’s a polynomial) on all of E.
In fact, it is an invertible affine linear transformation. This also makes the map
(and its inverse) regular and therefore it is also an isomorphism. Also note that
this transformation would not make any sense in a field of characteristic 2, since we
have that 2 = 1 + 1 = 0 in any such field. Since we will only consider curves of
characteristic 0, this will not pose any difficulties.

The new form of the elliptic curve obtained by the isomorphism is:

y2 = x3 +
b2
2
x2 +

b4
2
x+

b6
4

where the bi are as defined in table (1). The ci’s and the other quantities will be
explained shortly.

Table 1. Several coefficients and other quantities for an elliptic curve

b2 = a1
2 + 4a2 c4 = b2

2 − 24b4 1728∆ = c4
3 − c62

b4 = 2a4 + a1a3 c6 = b2
3 + 36b2b4 − 216b6 j = c4

3/∆
b6 = a3

2 + 4a6

The last transformation we can apply is the Tschirnhaus transformation that we’re
already familiar with from the proof that P is algebraically closed. It removes the
x2 term as follows:

x 7−→ (x− 1

6
b2)

As before, this is also an isomorphism. The curve we obtain after this map is:

(25) y2 = x3 + (
1

3
b2

2 +
1

2
b4)x+ (− 1

216
b2

3 +
1

72
b2

2 − 1

2
b4b6 +

1

4
b6)

which is already in the form y2 = x3 + Ax + B. One usually doesn’t use this form,
by convention it is usually given in the following reduced Weierstrass form:

y2 = x3 − 27c4x− 54c6
This form can be acquired by rescaling equation (25). The ci’s are as in table (1).

5.2. Singularities and Isomorphisms. Having seen what a smooth elliptic curve
looks like, let us consider the case of a singular Weierstrass equation. There are two
possibilities: the singularity can be a node or a cusp. If we write the Weierstrass
equation as y2 = f(x) then these cases correspond respectively to f having a double
zero or a triple zero. To see why this is the case we consider g = y2 − f(x). Then E
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Figure 3. A smooth elliptic curve

has a singularity if and only if
∂g

∂x
=
∂g

∂y
= 0. This implies 2y = 0 or y = 0. In other

words, a singularity must occur exactly at a zero of f . But we also need
∂f

∂x
= 0.

This only occurs if we have a repeated zero. Since f is cubic, we have two options:
a double or a triple zero.

There are two quantities from table (1) we haven’t discussed yet : the discrim-
inant and the j-invariant. The discriminant ∆ is used to determine whether a
Weierstrass equation has singularities and the second is a common quantity of iso-
morphic elliptic curves. This is shown in the following theorem:

Theorem 5.3. Let E be a curve given by a Weierstrass equation over an algebraically
closed field k. Then we have that:

• (i) it is nonsingular if and only if ∆ 6= 0
• (ii) it has a node if and only if ∆ = 0 and c4 6= 0
• (iii) it has a cusp if and only if ∆ = c4 = 0.
• (iv) two elliptic curves are isomorphic if and only if they have the same j-

invariant

Proof. The proof is in [Silv09] in chapter 3. �

From this theorem we see that the occurrence of singularities in Weierstrass equa-
tions is completely determined by the discriminant. The type of singularity is deter-
mine by c4.
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Transformation table for Weierstrass equations
u1a1

′ = a1 + 2s
u2a2

′ = a2 − sa1 + 3r − s2
u3a3

′ = a3 + ra1 + 2t
u4a4

′ = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st
u6a6

′ = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1
u2b2

′ = b2 + 12r
u4b4

′ = b4 + rb2 + 6r2

u6b6
′ = b6 + 2rb4 + r2b2 + 4r3

u8b8
′ = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c4
′ = c4

u6c6
′ = c6

u12∆′ = ∆
j′ = j

Table 2

We have yet to discuss isomorphisms. It can be shown that any isomorphism of
an elliptic curve preserving the Weierstrass form must be of a special form. These
isomorphisms are called Weierstrass coordinate changes.

Definition 5.4. A change of variables for an elliptic curve E is called a Weierstrass
coordinate change if

• x = u2x′ + r
• y = u3y′ + su2x′ + t

for some u ∈ k∗ and r, s, t ∈ k.

Note that these transformations are affine linear transformations with determinant
u6 6= 0. Applying such a coordinate change (which preserves the Weierstrass form)
induces a set of new coefficients ai

′, bi
′ and ci

′. These are given by Table 2.

5.3. Group Law. Let E be an elliptic curve given by a Weierstrass equation. Every
point P = (x, y) on this curve in Weierstrass form has a corresponding point in P2:
[x, y, 1]. There is one point missing of course, and that is the point at infinity: [0, 1, 0].

If we now take any line L in P2 (where a line has an equation of the form aX +
bY + cZ = 0) then we can intersect this line with the curve E. We now use the
following theorem:
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Theorem 5.5. (Bézout’s Theorem) Let Y, Z be distinct curves in P2, having degrees
d, e. Let Y ∩ Z = {P1, ..., Ps}. Let i(Y, Z;Pj) be the intersection multiplicity of Y
and Z in Pj. Then: ∑

i(Y, Z;Pj) = de

Proof. See [Har77] for the proof and for an explanation of the term ”intersection
multiplicity”. We shall not define it rigorously. �

By Bézout’s Theorem there are exactly 3 points of intersection (since the curve
has degree 3 and the line degree 1, counting multiplicities). If we fix two points
P,Q ∈ E then we obtain another point R ∈ E. If P = Q then L should be taken
as the tangent line through P . Either way we obtain a point R. Let L′ be the line
through O and R. Then the third intersection point of this line L′ with E will define
the group operation P ⊕Q.
Let us summarise the group operation as follows:

• Take two points P,Q ∈ E
• Take the unique line through P and Q and intersect this line with E to obtain

the point R. If P = Q then take the tangent line.
• Take the line through O and R and intersect this line with E to obtain the

point R′.
• Then P ⊕Q = R′ or P ⊕Q⊕R = O.

The fact that ⊕ defines a group is contained in the following theorem which we
will not prove.

Theorem 5.6. The operation ” ⊕ ” makes E into an abelian group with identity
element O.

Proof. See [Silv09], [Kna92] or [Cas91]. �

Remark 5.7. From now on we will denote the operation simply by ”+”. Furthermore
we define [m]P = P + ...+P (m times) if m > 0 and [m]P = −P − ...−P (m times)
if m < 0 together with [0]P = O.

We can now consider points of finite order. We call these pointsm-torsion points.

Definition 5.8. Suppose P ∈ E. Then P is an m-torsion point if [m]P = O.

For every m we define a subgroup of points on an elliptic curve by only considering
points of finite order.

Definition 5.9. Let E be an elliptic curve. The m-torsion subgroup of E, de-
noted by E[m], is the set of points of E of order m,

E[m] = {P ∈ E : [m]P = O}
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Every such E[m] is isomorphic (as an abstract group) to a particularly easy, cyclic
group:

Theorem 5.10. Let E be an elliptic curve over a field k of char(k) = 0. Then

E[m] ∼= Z/mZ× Z/mZ

Proof. See [Silv09] chapter 3, paragraph 6. �

We now give explicit equations for the group operation. We only give the equations
for adding the same point (also known as the duplication formula). We treat this
special case because we want to show the existence of points of order 3.

Example 5.11. (Group Law Algorithm) Let E be given by:

y2 = x3 + a2x
2 + a4x+ a6

• (a) Let P1 = (x1, y1) with y1 6= 0. We want to calculate [2]P1 = P2 where
P2 = (x2, y2)

• (b) Let λ =
3x21 + 2a2x1 + a4

2y1
and ν =

−x13 + a4x1 + 2a6
2y1

• (c) Then x2 = λ2 − a2 − 2x1
• (d) And y2 = −λx2 − ν.

Now let x2 = x1 and y2 = y1. Then y1 = −λx1 − ν and 3x1 = λ2 − a2 or
λ2 = 3x1 + a2. Using the equations for λ and ν we obtain a polynomial in x1
which can always be solved over an algebraically closed field. This also gives
the y1. With a little more effort one can show that there are exactly 9 points
of order 3.

As we saw during our discussion of the discriminant, a curve given by a Weierstrass
equation can be singular. The good news is that we can still use the group law on
these curves of genus 0. We just have to restrict ourselves to a subset of the points
on E.

Definition 5.12. Let E be a (possibly singular) curve given by a Weierstrass equa-
tion. The nonsingular part of E, denoted by Ens, is the set of nonsingular points
of E.

This set is actually a group: it is closed under the composition law. This can be
proved using Bézout’s Theorem. The main argument in the proof is that singular
points have multiplicity at least two. If the curve defined by a Weierstrass equation
is singular, then we can give an isomorphism from the group Ens to a much easier
group. This is the content of the next proposition:
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Proposition 5.13. Let E be a curve given by a Weierstrass equation with ∆ = 0,
so E has a singular point S. Then the composition law makes Ens into an abelian
group. Furthermore, we have that

• (a) Suppose that E has a node, so c4 6= 0. Then Ens ∼= k∗, the unit group of
k
• (b) Suppose that E has a cusp, so c4 = 0. Then Ens ∼= k+, the additive group

of k.

Proof. For the full proof see [Silv09] chapter 7, paragraph 2. �

The last theorem from the field of elliptic curves we need is known as the ”Nagell-
Lutz” theorem. It says that if we have a point of finite order (where m is not a prime
power) then it must have positive valuation.

Theorem 5.14. (Nagell-Lutz) Let P be the field of complex Puiseux series and let
E/P be an elliptic curve given by a Weierstrass equation with all coefficients having
non-negative valuation. If P = (x, y) is a point of order m where m is not a prime
power

Proof. This can be proven analogous to the argument presented in chapter 8, para-
graph 7 of [Silv09] �

So if we take a point of say order 3, then its coordinates must have non-negative
valuation.
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6. Minimal Weierstrass Equations and Reduction

In this section we discuss the reduction of elliptic curves over P using valuation
rings. We already saw how to reduce elements of P≥0 by simply sending an element
(x(t)) to (x(0)). To define the reduction of elliptic curves over P we need a minimal
Weierstrass equation. We show how to obtain these and we show how you can
find out whether a given Weierstrass equation is minimal.

6.1. Minimal Weierstrass Equations. In this section we’ll use the following affine
form for an elliptic curve E/k:

(26) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

The following notation shall be used as well:

• k, an algebraically closed field, in this case the field of Puiseux series.
• R = {x ∈ k : v(x) ≥ 0}, the ring of integers.
• R∗ = {x ∈ K : v(x) = 0}, the unit group of R.
• M = {x ∈ K : v(x) > 0}, the maximal ideal of R.

This equation for an elliptic curve is unique in the sense that all elliptic curves
isomorphic to the given elliptic curve are related by Weierstrass coordinate changes.
We restate their definition here:

Definition 6.1. A change of variables is called a Weierstrass coordinate change if

• x = u2x′ + r
• y = u3y′ + su2x′ + t

with u ∈ k∗ and r, s, t ∈ k.

The Weierstrass equation is thus unique up to isomorphisms of the form above.
When changing coordinates, the coefficients change according to Table 2. Our goal
is now to find a Weierstrass equation such that the valuation of all the coefficients
is non-negative. That is, we want ai ∈ R. As we shall see, this can be done by
chosing a high enough power of t for u. Since the discriminant is a polynomial in
the coefficients, the discriminant must then have positive valuation as well. We want
this new equation to be unique in some sense, so we demand an extra condition on
the discriminant. This is summarized in the following definition:

Definition 6.2. A Weierstrass equation for an elliptic curve is called Weierstrass-
minimal if:

• (1) v(ai) ≥ 0
• (2) v(∆) is minimal under (1)

Let us prove a preliminary result concerning minimal equations first.
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Lemma 6.3. Let E be an elliptic curve given in standard Weierstrass form. Then
we can bring this equation to the reduced Weierstrass form E ′

y2 = x3 − 27c4x− 54c6

by isomorphisms such that v(∆) = v(∆′).

Proof. The first isomorphism is given by:

• x −→ x
• y −→ y + 1

2
(a1x+ a3)

Note that this particular isomorphism has u = 1 ∈ R∗ so the valuation of the
discriminant is unaffected.
The second isomorphism is given by

• x −→ (x− 3b2)/36
• y −→ (y/216)

We have v(u) = v(1
6
) = 0 which again leaves the valuation of the discriminant

untouched. �

As mentioned before, one now might consider the following question: to what
extent is this minimal equation unique? Suppose that we have a minimal equation
for an elliptic curve. Isomorphic curves are obtained by considering the Weierstrass
coordinate change. These are considered equivalent. However, not all equivalent
elliptic curves are minimal with respect to the given valuation. A minimal equation
of an elliptic curve is unique up to particular isomorphisms, as is shown in the next
Lemma.

Lemma 6.4. A given minimal Weierstrass equation is unique up to isomorphisms
with u ∈ R∗ and r, s, t ∈ R

Proof. We know that the Weierstrass equation is unique up to isomorphisms stem-
ming from the Weierstrass coordinate change. So only the final claims have to be
checked. The first one says that u has zero valuation. Now suppose that both the
original equation and the new equation are minimal. Because of minimality we have
that v(∆) = v(∆′). But the transformation formulas give

(27) 12v(u) + v(∆′) = v(∆)

Combining the preceding two equations yields v(u) = 0 or in other words u ∈ R∗,
which proves the first part.
The second part follows analogously by considering Table 2. If a given minimal
Weierstrass equation is related to another, then we can bring it to ”bi”-form (The
second form in the proof of Lemma 6.3) without changing minimality. Applying a
transformation with r would then result in the following change:
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u2b2
′ = b2 + 12r

We know from the first part that v(u) = 0. If the new equation is to be minimal
then v(b2

′) ≥ 0. This also implies that r ∈ R (because v(b2) ≥ 0).
The same argument can be used for the equation

ua1
′ = a1 + 2s

to conclude that s ∈ R. For t we use the following equation:

u3a3
′ = a3 + ra1 + 2t

If v(t) < 0 then v(a3
′) < 0 which contradicts the minimality assumption.

�

Since v(∆) ≥ 0, we know that the equation is minimal if the valuation of the
discriminant is exactly zero. This corresponds to the presence of a constant, non-
zero term in the discriminant. However, we can say more than that. A necessary
and sufficient condition for minimality of an elliptic curve over the field of Puiseux
series is given in the next theorem.

Theorem 6.5. A Weierstrass equation is minimal over the field of Puiseux series if
and only if min{v(ai)} = 0

Proof. (=⇒) Suppose that a given equation is minimal. Under any coordinate change
we have the following:

(28) ∆′ = u−12∆

Since the equation is assumed to be minimal, we must have that v(∆′) ≥ v(∆) if a′i ∈
R. Now suppose for a contradiction that min{v(ai)} := m > 0. (Note that m smaller
than zero would contradict minimality). If m > 0 then surely m′ = min{aj

j
} > 0.

The definition of minimality allows us to use any u we want, as long as that u ∈ K∗.
We take u = tm

′
. Using this transformation (along with r = s = t = 0), the new

coefficients will have v(ai
′) ≥ 0 again. To see this, note that from the transformation

table we have that

(29) uiai
′ = ai

This also means that iv(u)+v(ai
′) = v(ai) or v(ai

′) = v(ai)−iv(u). But v(u) = m′.
We can therefore write

(30) v(ai
′) = i(

v(ai)

i
−m′)
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But m′ ≤ v(ai)
i

for every i. Therefore (v(ai)
i
−m′) ≥ 0 and consequently v(ai

′) ≥ 0.
The new equation therefore satisfies the first condition of minimality. Now our earlier
assumption was that v(∆′) ≥ v(∆). Combined with a transformation rule, this gives:

(31) v(∆′) = −12v(u) + v(∆) ≥ v(∆)

Or in other words: 12v(u) ≤ 0. This clearly contradicts our choice for u, complet-
ing the proof of ”=⇒”.

(⇐=) Suppose now that min{v(ai)} = 0. Obviously (1) is satisfied. We once again
proceed by assuming the opposite, namely that the Weierstrass equation is not min-
imal. This means that we can find u, r, s and t such that:

(32) v(∆′) < v(∆)

whenever v(a′i) ≥ 0. Recall the standard Weierstrass equation:

(33) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

We give a small lemma which will help us.

Lemma 6.6. Let E be an elliptic curve in reduced Weierstrass form. Let E ′ be an
isomorphic elliptic curve also in reduced Weierstrass form. Then the two equations
are related by a Weierstrass coordinate change with r = s = t = 0.

Proof. Two isomorphic elliptic curves in reduced Weierstrass form are always related
by a Weierstrass coordinate change. If one of the r, s, t is not zero then we would get
an equation which is not in reduced Weierstrass form. �

Using Lemma 6.3 we can reduce the standard Weierstrass equation to the reduced
Weierstrass form Ered without changing the discriminant. We assumed that there is
a Weierstrass coordinate change lowering the discriminant, call it φ1. This coordi-
nate change might use r, s, t factors. We can however obtain a coordinate change φ
lowering the discriminant with r = s = t = 0 as follows.

Take the original Weierstrass equation and use φ1 on it to obtain E ′. This elliptic
curve can be brought to reduced form E ′red by Lemma 6.3. So we have that Ered and
E ′red are two elliptic curves in reduced form related by a coordinate change. Then
this coordinate change must be have r = s = t = 0 acoording to Lemma 6.6. Call
this coordinate change φ. This φ also has v(∆′) < v(∆). We can use this φ on the
original E. But this would lower the valuation of one of the ai below zero. But φ(E)
and E ′ have the same discriminant and have u ∈ R∗ and r, s, t ∈ R which would
preserve the minimality of the equation. But one of the ai in φ(E) has valuation less
than zero, a contradiction. So no such φ can exist.

�
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Example 6.7.

(34) y2 = x3 − 27(1 + t)x+ 54(1− t)
Both coefficients have nonnegative valuation, the minimum of which being 0 (which
is exactly what is demanded by the theorem). Note that the discriminant is given
by

(35) ∆ = 6298560t+ 2519424t2 + 1259712t3

which has valuation 1. So there are elliptic curves which are minimal but have
v(∆) > 0.

Now that we have discussed conditions for minimality, we should investigate
whether we can actually obtain a minimal equation for any Weierstrass equation.
This boils down to reusing a trick from the first part of the proof of Theorem 6.5.

Lemma 6.8. (Existence of minimal models) Suppose that E is an elliptic curve
over P given by the Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Then there exists an isomorphic curve E ′ such that its Weierstrass equation is min-
imal.

Proof. Consider the following minimum:

(36) m = min
j
{aj
j
}

Now define u as u = tm. According to the transformation rules we have the following:

• uiai′ = ai
• ∆′ = u12∆

In terms of valuations, this can be read as:

• val(ai
′) = val(ai)− im = i(val(ai)

i
−m) ≥ 0

We know however that m is attained for at least one of the ai. Call that coefficient
aj. Then we have that val(aj

′) = 0. So at least one of the terms has a constant
term and all the new coefficients have positive valuation. These conditions imply
minimality of the equation according to theorem 6.5. We therefore have that the
equation with the new coefficients is minimal. �

6.2. Reduction. We now introduce the concept of reducing an elliptic curve over
P≥0 := R to C. This is done by the mapping

φ : P≥0 −→ C
f 7−→ f(0)



44 PAUL HELMINCK

also known as the reduction mapping. It is a surjective homomorphism with the ideal

M = {f ∈ R : v(f) > 0}
in its kernel. We shall denote this map by φ(x) = x̃. We can apply this reduc-
tion mapping to an elliptic curve E(P) in Weierstrass form by applying it to the
coefficients. This yields a curve Ẽ(C). So if we have that E(P) is given by

(37) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

then Ẽ(C) is given by:

(38) y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

Suppose now that we transform our curve E(P) by a Weierstrass coordinate change
φ, with φ preserving minimality. This means that u ∈ R∗ and r, s, t ∈ R. The new
curve, E ′(P) is related to the old one by the transformation table. If we reduce this
new curve, then we obtain a curve Ẽ ′(C). This amounts to reducing the factors u, r, s
and t. Since ũ 6= 0 we have that the reduced curve Ẽ(C) is once again unique up to
normal isomorphisms over the field of complex numbers.

Example 6.9. As a simple example, consider the the following elliptic curve:

(39) y2 = x3 + (1 + t)x

This elliptic curve has discriminant (48(t+ 1))3/1728 and j-invariant 1728, both
having zero valuation (making this elliptic curve minimal!). Reducing this curve
yields the following elliptic curve over the field of complex numbers:

(40) y2 = x3 + x

This is an elliptic curve with discriminant 483/1728 and j-invariant 1728. In this
case we once again obtain a non-singular curve. This is not always the case however.

After applying the reduction map on an elliptic curve we obtain a curve which is
either nonsingular or singular. We designate a name for each case.

Definition 6.10. Let E/P be an elliptic curve with a minimal Weierstrass equation
and let Ẽ be the reduced curve.

(a) E has good reduction if Ẽ is non-singular.
(b) E has bad, multiplicative reduction if Ẽ is singular, where the singularity

is a node.
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(c) E has bad, additive reduction if Ẽ is singular, where the singularity is a
cusp.

Recall that Ẽ is non-singular if and only if the discriminant ∆̃ 6= 0. This corre-
sponds to v(∆) = 0. If v(∆) > 0, we obtain a singular curve because all the powers
of t in ∆ are removed.

Corollary 6.11. Suppose that an elliptic curve E over P is given by a minimal
Weierstrass equation. Then it cannot have additive reduction.

Proof. Suppose that E has bad reduction and that the singularity is a cusp. We then
have ∆̃ = 0 and c̃4 = 0. But this means that c̃6

2 = 0 or c̃6 = 0. This contradicts
minimality as we have seen in the proof of theorem 6.5. So we conclude that additive
reduction cannot occur. �

If we have that the singularity is a node, then ∆̃ = 0 (or equivalently: v(∆) > 0)
and c̃4 6= 0. This means that v(c4) = 0 and consequently v(c6) = 0 too. In this case
the constant terms of the two coefficients exactly cancel in the discriminant, making
v(∆) bigger than zero.
We now show that the two types of reduction can be read off the valuation of the
j-invariant, as is reflected in the following theorem:

Theorem 6.12. An elliptic curve E over P has:

(a) good reduction if and only if v(j) ≥ 0
(b) bad, multiplicative reduction if and only if v(j) < 0

Proof. (a) (=⇒) If E has good reduction then v(∆) = 0. Since

(41) j = c4
3/∆

We have that v(j) = 3v(c4)− 0 = 3v(c4) ≥ 0.
(⇐=) If v(j) ≥ 0 then v(j) = 3v(c4)−v(∆) = 3v(c4)−v(c34−c62) ≥ 0. Or in other

words: 3v(c4) ≥ v(∆). Suppose that v(∆) > 0. Then v(c4) > 0 and consequently c6
must have zero valuation (because we’re assuming that our Weierstrass equation is
minimal). But this would imply v(∆) = 0 which is the desired contradiction.
(b) (=⇒) If E has bad, multiplicative reduction then v(∆) > 0. Then once again we
must have v(c4) = 0. This implies v(j) < 0.

(⇐=) Suppose that v(j) < 0. Then 3v(c4) < v(∆). But this implies that v(∆) > 0
which implies bad reduction. This implies multiplicative reduction which completes
the proof. �
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6.3. Reduction of Subgroups. We can now more closely look at the structure in
the reduced curve. We know that an elliptic curve over P can reduce to either a
nonsingular or singular curve. We know from proposition (5.13) that the set of all
nonsingular points of Ẽ forms a group under the ordinary composition law: Ẽns.
If E has multiplicative reduction (and thus v(j) < 0) then Ẽns ∼= C∗ by the same
proposition.

A point on the original curve can now reduce to either Ens ∼= C∗ or the set of
singular points. We therefore introduce:

E0 = {P ∈ E(k) : P̃ ∈ Ẽns}
Remark 6.13. This set does not depend on the minimal Weierstrass equation chosen.
This follows from Lemma 6.4. To see this again we restate the content of the Lemma
slightly differently: if two minimal equations are isomorphic then they are mapped
to reduced equations which are also isomorphic.

On the elliptic curve E(P) we have a group law which gives extra structure. One
might wonder how this group law is transferred to the reduced curve. The following
theorem tells us exactly how.

Theorem 6.14. Let E be an elliptic curve with a minimal Weierstrass equation. Let
E0 be the set of points with nonsingular reduction. We then have that:

• (a) the set E0 is a subgroup of E(P).
• (b) the map φ : E0 → Ẽns is a surjective homomorphism.

Proof. The proof boils down to showing that the group law transfers to the reduced
curve. The details are in [Silv09] chapter 7 paragraph 2. �

Proposition 6.15. Let E be an elliptic curve with multiplicative reduction. Then
there exists a point P ∈ E[3] such that P /∈ E0

Proof. Suppose we take an elliptic curve with multiplicative reduction. Then Ẽns ∼=
C∗. Suppose P ∈ E[3]. That is, P is of order 3. Suppose for a contradiction that
every P ∈ E[3] reduces to a nonsingular point. Since P is of order 3, its coordinates
must have non-negative valuation by Nagell-Lutz. So P = (x, y) is mapped to to
P̃ = (x̃, ỹ) which has projective coordinates P̃ = [x̃, ỹ, 1] 6= [0, 1, 0]. This means that
P does not reduce to the identity element of Ẽ.
We can now use Theorem 6.14 which says that the reduction map is a homomorphism.
This means that

φ(P + P + P ) = φ(P ) + φ(P ) + φ(P ) = φ(O) = Õ.
But this also means that φ(P ) is of order 3 in Ẽns ∼= C∗. But the there are exactly

2 points of order 3 in C∗: the two complex numbers: x = −1

2
±
√

3i

2
such that
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x3 = 1. But the map ξ : E[3] → C∗ is injective (because P does not reduce to O)
and E[3] has 8 points of order 3 because E[3] ∼= Z/3Z × Z/3Z. This is the desired
contradiction. �

We shall use this proposition in the proof of the main theorem of this thesis.
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7. Tropical Geometry

In this section we will give the definitions we use for tropical varieties and other
tropical notions. As was briefly mentioned in the introduction, everything in the
tropical world takes a piece-wise linear form. This means that locally everything
looks linear. In tropical geometry the structure of such piece-wise linear objects,
known as tropical varieties is studied. The bigger these varieties get, the more and
more they look like large honeycombs. Interest for the tropical world arose when
people started deforming complex varieties. We shall study this approach as well as
the purely algebraic approach.
The first approach uses the Puiseux series we introduced in section 2. Instead of
deforming complex varieties using a limiting process, one can apply the valuation
map on varieties over P . This process is known as the tropicalisation. This is one
way of reaching the tropical world.

The other approach starts with two special operations on the field R (taking a hint
from the results of the first approach). These operations lead to a semi-ring. Using
these operations one can set up tropical polynomials, which again form a semi-ring.
These polynomials are then used to define first tropical curves and afterwards trop-
ical hypersurfaces. These two approaches are linked to each other using Kapranov’s
theorem, which is often referred to as the ”fundamental theorem of tropical geome-
try”.
Having seen several important ideas from the tropical world, we can start working
towards our main goal: tropical elliptic curves. One can define elliptic curves over
the field P as usual. This variety can then be tropicalised using the methods given
earlier in this section. What you get is called a tropical elliptic curve. Most of
these curves have a bounded complex in their honeycomb structure. This bounded
complex is called the cycle of a tropical elliptic curve. Mikhalkin showed that these
cycles behave much like the j-invariant for normal elliptic curves: they are invariants
under certain morphisms.
This was confirmed in [KMM00] by Katz, Markwig and Markwig. They showed that
every elliptic curve with v(j) < 0 inducing a triangulisation in the marked subdivi-
sion must have a cycle with length −v(j). Baker, Payne and Rabinoff later showed
why some elliptic curves do not tropicalise to a proper tropical elliptic curve. As the
main result of this thesis, we show that we can find an explicit equation for every
elliptic curve with v(j) < 0 such that it tropicalises to the correct cycle length.

Before we can talk about more complex matters like these we first need to lay
down some groundwork. We start with the simplest approach to tropical geometry:
the purely algebraic one.
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7.1. Tropical Semi-ring. We start by defining the tropical semi-ring: R := R ∪
{∞}. This is the normal real line together with ”infinity”. We define the following
operations on R:

• a⊕ b = min{a, b}
• a� b = a+ b

Let us check that this is indeed a semi-ring. We needR to be an abelian semi-group
with respect to the operation ⊕. The identity element is given by∞. Commutativity
and associativity are obvious, the only thing missing is of course additive inverses.
In fact, the only element having an additive inverse in this ring is ∞. This accounts
for the word ”semi” in semi-ring. The other properties needed for this set to be a
ring are also easily verified.

Remark 7.1. R is commutative but it is not a semi-field. The element missing a
”multiplicative” inverse is of course ∞. This is because tropical multiplication for
∞ is defined as ∞� a = a�∞ =∞.

Remark 7.2. Some authors define the tropical semi-ring with the operation ”⊕ =
max”. This ring is isomorphic to the one we defined by the isomorphism x 7→ −x.

Example 7.3. Let us perform some basic arithmetic:

2⊕ 3 = 2
2⊕∞ = 2
(2�∞)⊕ 3 =∞⊕ 3 = 3
(2⊕ 3)� 5 = 7 = (2� 5)⊕ (3� 5) = 7⊕ 8

Using these operations we can define tropical polynomials. We shall first define
them for one variable x. We will interpret these as functions from R −→ R.

Definition 7.4. A tropical polynomial f of the form

f(x) =
n⊕
i=0

ai � xi

where xi should be interpreted as x� x� ...� x (i times).

Remark 7.5. We can rewrite this expression as f(x) = mini{ai + ix}.

Lemma 7.6. The set of all tropical polynomials forms a semi-ring when addition
and multiplication are defined as:

• (f ⊕ g)(x) = f(x)⊕ g(x)
• (f � g)(x) = f(x)� g(x)

Seeing that these operations are well defined (that is, that the sum and product
once again yield tropical polynomials) boils down to noting that if we have that
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the minimum is attained for a certain term, then that term can be used for a new
polynomial. All the other properties follow quite easily as well.
One can define the roots of the tropical polynomials. This definition will be analogous
to the definition of general tropical varieties.

Definition 7.7. Let f be a tropical polynomial. Then x is a tropical root of f if
for at least two terms p, q of f we have that p(x) = q(x).

Example 7.8. Take the polynomial f = min{2x+ 1, 3x}. Then f has a root exactly
where 2x + 1 = 3x, or x = 1. Note that we can write f in tropical form as f =
(1� x2)⊕ x3. This is a polynomial of degree 3, but it only has 1 root.

Example 7.9. Take the polynomial f = min{2x + 1, 3x, 2x}. We have as before
2x + 1 = 3x with x = 1 as a possible candidate for a root of f . But notice that the
term 2x is smaller at x = 1. Therefore x = 1 is not a root anymore. Instead we have
that x = 0 is a root since 0 < 1.

To see how these tropical polynomials are related to normal polynomials we define
the tropicalisation of a polynomial over a field k. Every field k comes with a
valuation (we always have the trivial valuation). So if f =

∑n
i=0 aiX

i ∈ k[X] then
we can apply such a valuation on every coefficient of f .

Definition 7.10. If f =
∑n

i=0 aiX
i and v(·) is a valuation on k then we define the

tropicalisation of f at a point as:

(42) Tropv(f)(x) =
n⊕
i=0

(v(ai)) + ix)

This allows us to tropicalise a wide range of polynomials on all sorts of fields.

Remark 7.11. Note that for the trivial valuation we have that v(ai) = 0 for all ai 6= 0
so we obtain the tropical polynomial:

Trop(f)(x) = min
i:ai 6=0
{ix}

This polynomial only has one root: x = 0.

These tropical roots can be related to the original roots of the polynomial. To
show this we first need a preliminary result.

Theorem 7.12. Suppose that f and g are polynomials in k[X]. Then

Trop(f · g)(x) = Trop(f)(x) + Trop(g)(x)
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Proof. Suppose f =
∑n

i=0 aiX
i and g =

∑n
j=0 bjX

j so that h = fg =
∑

k=0 ckX
k

where ck =
∑

i+j=k aibj. Then Trop(fg)(x) = mink{v(ck) + kx}. One of the proper-
ties of the valuation then gives us

min
k
{v(ck) + kx} ≥ min

k
{min
i+j=k

{v(ai) + v(bj)}+ ix+ jx}

= min
i
{v(ai) + ix}+ min

j
{v(bj) + jx}

= Trop(f)(x) + Trop(g)(x)

Now we need Trop(fg)(x) ≤ Trop(f)(x) + Trop(g)(x). To prove this we will need
the following inequality:

if v(a) < v(b) then v(a+ b) = v(a).

Now take i0 and j0 maximal such that v(ai0) + i0x = Trop(f)(x) and v(bj0) + j0x =
Trop(g)(x). Define k0 = i0 + j0. We will show that

v(ck0) = v(ai0) + v(bj0)

which implies that

min{v(ck) + kx} ≤ v(ck0) + k0 = v(ai0) + ix+ v(bj0) + jx

as desired.
Let i > i0 then by maximality of i0 we have that v(ai) + ix > v(ai0) + i0x or
v(ai0) < v(ai) + (i − i0)x. For j we then have that v(bi0) ≤ v(bi) + i− i0x. Adding
these two equations yields:

v(ai0) + v(bj0) < v(ai) + v(bj) + (i+ j − i0 − j0)x = v(ai) + v(bj)

We claim that the same holds if i < i0. We know that j0 = k0− i0. But this means
k − i = j > k0 − i0 = j0. We can therefore repeat the same argument but this time
for j > j0. We therefore have

v(ai0) + v(bj0) < v(ai) + v(bj)

for all i and j not equal to i0, j0. But then according to Lemma 3.4 we must have
that v(ck0) = v(

∑
i+j=k0

aibj) = v(ai0) + v(bj0) which proves the statement. �

So we have that Trop preserves the multiplicative structure of polynomials (where
”+” is understood to be tropical multiplication). Using this theorem we can prove
the following lemma:

Lemma 7.13. Suppose f is a monic polynomial in a single variable over an alge-
braically closed field k. Then for any valuation v, we have that

v{roots of f} = {roots of Trop(f)}
In other words, v maps the roots of f to the roots of Trop(f) surjectively.
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Proof. Write f as
∏n

i=0(X − αi). Then according to Theorem 7.12 we have that
Trop(f)(x) =

∑n
i=0 Trop(x−αi) =

∑n
i=0 min{x, v(αi)}. But this least minimum can

only be attained twice if x = v(αi). So v maps the roots of f to the roots of Trop(f).
Suppose that y is a root of Trop(f). Then it must be one of the v(αi), which proves
the claim. �

We defined the Trop(f)(x) by applying the valuation to every coefficient. What
this lemma says it that the valuation preserves the roots of f . This lemma can be used
to give a slightly different (tropical) proof of Eisenstein’s Criterion for irreducibility.

Theorem 7.14. (Eisenstein’s Criterion) Suppose that f ∈ R[X] of degree n ≥ 2
for a unique factorisation domain R and that there is an irreducible element p such
that p|ai for 0 ≤ i < n, p - an and p2 - a0. Then f is irreducible over R[X].

Proof. Suppose f is reducible, so that f = gh with g, h having a lower degree than
f . Since p is an irreducible element, we can define a valuation on the quotient field
of R. Every element of this field can uniquely be written as y = pk l

m
, where k ∈ Z

and l,m ∈ R such that p - l,m. For every nonzero element we define the valuation
as v(y) = k.
With this valuation we can start tropicalising our polynomial. Note that v(ai) ≥ 1
for 0 < i < n, v(an) = 0 and that v(a0) = 1. The tropicalisation takes the following
form:

Trop(f)(x) = min{v(ai) + ix}
Consider this tropical polynomial for x ≥ 0. Since v(ai) ≥ 1 we have that v(a0) =
1 ≤ v(ai) + ix for x ≥ 0 and 0 < i < n. Thus Trop(f)(x) will attain the value 1 for
some x. The term v(an) + nx = 0 + nx = nx will be smaller than 1 for certain x. In
fact we have that Trop(f)(x) has one root exactly at x = 1/n. This statement needs
some backup from a theorem on valuations:

Theorem 7.15. Suppose that k is a field with a valuation v. Then v extends uniquely
to a valuation on the algebraic closure k̄.

Proof. See [Ser79] for the proof. �

So we can use this extended valuation which allows values like 1/n. Now remember
that the tropical roots correspond to a root of f over the algebraic closure of Quot(R).
These roots must multiply to a0 which has v(a0) = 1. Therefore any negative tropical
roots are not allowed, making 1/n the only tropical root. Since f=gh, we know that
Trop(f) = Trop(g) + Trop(h). But this means that 1/n is a tropical root of at least
one of g or h (in fact of both). But deg(g) < n and the product of the roots of g
must be an element of R. This is impossible, since a product of less than n terms
all having valuation 1/n will have valuation less than 1 (which is not an element of
R by irreducibility of p). �
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Figure 4. The amoeba of z1 + z2 = 1

7.2. Amoebas. In this section we will see the connection between the Puiseux Series
defined earlier and the tropical world defined in the section above. We already saw
a hint of the connection in the definition of the tropicalisation of a polynomial. We
used a valuation to map an element of a field to R. This will exactly be the more
general definition of tropicalisation. Here we will see how this definition works
for a variety. We consider a complex variety V and then take a logarithm map to
construct something in R2. Taking limits will result in the tropical curve, which will
be defined using valuations.
We first construct the amoeba of a complex plane curve C. A complex plane curve
is something of the form C = {(z1, z2) : f(z1, z2) = 0} for some f ∈ C[X, Y ]. The
idea is to restrict to the open subset (C∗)2 of the complex plane and then to map it
to the real plane by the map:

Log : (C∗)2 −→ R2

z = (z1, z2) 7−→ (x1, x2) := (log |z1|, log |z2|).

The resulting subset A = Log(C ∩ (C∗)2) is called the amoeba of C.

Example 7.16. • (a) Suppose we take the plane curve z1+z2 = 1. There are two
points with zi coordinate zero: (1, 0) and (0, 1). Suppose we take (0, 1) first,
then points close to this point are mapped to (−∞, 0) by the Log map. This
corresponds to the tentacle going to the left. Similarly we have a tentacle for
the point (1, 0). The tentacle going to the upper-right part corresponds to
the points (z, 1− z) for |z| → ∞.
• (b) Now take the slightly different plane curve defined by e3z1 + e2z2 = 1.

The easy way to find tentacles is to look for the limit behaviour of Log near
a zero coordinate. If we set z2 = 0 then we find the point z1 = 1/e3. This
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(a) The
first amoeba
tropicalised

(b) The second
amoeba tropicalised

Figure 5. The tropical curves for the amoebas

point is mapped to log(z1) = −3. Likewise we have that the point (0, 1/e2) is
mapped to the point (−∞,−2). The other points follow as well. We see that
this is the same amoeba as in (a), only we have that this one is translated
over (−3,−2).

As can be seen in Figure 4, the resulting figure in R2 for the plane curve z1+z2 = 1
has three tentacles going to infinity and one eye in the middle. Our wish is now to
shrink the area of these tentacles and the eye to zero. This can be done using the
following modification of the logarithm map:

Logt : (C∗)2 −→ R2

z = (z1, z2) 7−→ (− logt |z1|,− logt |z2|) = (− log |z1|
log t

,− log |z2|
log t

).

for t ∈ R small. We call the limit of t −→ 0 the tropical curve associated to C.

Definition 7.17. Let C ⊆ C2 be a complex plane curve. We define the tropical
curve of C as V = limt→0 Logt(C ∩ (C∗)2)

Example 7.18. The tropical curve of the first amoeba discussed in Example 7.16 is
shown in Figure 5 . If we were to apply the same limit map to the ”shifted” amoeba
then we would obtain the same tropical curve as for the unshifted curve. This is
because the points in the plane are not fixed, in fact we have that the parameter t
sends the center to (0, 0)

This is obviously not what we want. We therefore introduce a family of curves:



TROPICAL ELLIPTIC CURVES AND j-INVARIANTS 55

Ct = t−3z1 + t−2z2 = 1

Note that for t = e−1 we indeed obtain the shifted plane curve. In fact we have that
Ct always passes through the points (0, t2) and (t3, 0) for all t. Thus we have fixed
the points with zero coordinates which are mapped to the tentacles. We now have
the proper tropical curve, as can be seen in Figure 5 again.

7.3. Connection to Puiseux Series. To actually construct tropical curves using
the previous method requires one to use a limiting process for each curve (or family
of curves). As was seen in Example 7.18, the tropical curve defined by an amoeba
doesn’t depend on a particular curve but a family of curves. We therefore consider
curves defined over a field with a parameter, like for instance the field P . This greatly
simplifies the limiting process, as we shall see that the tropical curve of a family of
plane curves is defined solely by the valuations of the coefficients.
We consider a family of curves Ct. This family is represented by one single curve
over P . Thus we have a polynomial f ∈ P [X, Y ]. A coefficient of this polynomial is
of the form a =

∑
k akt

k with k ∈ Q. Define w := v(a). Then by complex function
theory we have that |a| ≈ |awtw| for t→ 0. Applying the map Logt we obtain:

Logt(|a|) ≈
− log |awtw|

log t
=
− log |aw| − w log |t|

log t

The first term vanishes and we are left with the conclusion Logt(|a|) → −v(a).
Therefore we have that any limiting process on a curve in C2 reduces to taking the
valuation of the coefficients. We extend the valuation mapping as follows:

v : (P∗)2 −→ R2

z = (z1, z2) 7−→ (x1, x2) := (v(z1), v(z2)).

Restricting this map to a plane curve C yields the following definition:

Definition 7.19. A tropical plane curve is a subset Trop(C) of R2 of the form

Trop(C) = v(C ∩ (P∗)2) where C is a plane curve in P2.

Remark 7.20. The completion is taken to ensure we have values in R2. This is
because the natural valuation maps to Q.

Remark 7.21. It would seem more natural now to define the plane tropical curve
using −v(a) instead of v(a). This definition would lead to a necessary change in the
definition of our tropical semi-ring. That is, we would have to change the minimum
to a maximum for the upcoming alternative description. We used a minimum for
our tropical semi-ring (because it makes the tropicalisation easier) and thus we shall
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use v(a). Note that these descriptions are the same by the isomorphism given earlier
in remark (7.2).

This is our first rigorous definition of a tropical plane curve. It does not involve any
limit processes and is entirely algebraic of nature. It is however still quite unhandy
as it involves computing the valuation of every point on the curve. We shall remedy
this shortly, but first we give an example.

Example 7.22. Let us consider the plane curve defined by t−3z1 + t−2z2 = 1 with
(z1, z2) ∈ (P)2. If we take a point (z1, z2) then it depends on the valuation of the
coordinates where the point ends up.

• Suppose we take v(z1) > 3. Then we must have v(z2) = 2 or otherwise we
wouldn’t get v(1) = 0. Thus for x > 3 we get y = 2.
• Suppose that v(z2) > 2. Then we similarly obtain v(z1) = 3 or in other

words: for y > 2 we have x = 3.
• Suppose now that v(z1) ≤ 3, v(z2) ≤ 2. Then the leading terms of t−3z1 and
t−2z2 must cancel. In order for that to happen they must have the same
valuation, so −3 + v(z1) = −2 + v(z2) or v(z1) = 1 + v(z2). This corresponds
to the line y = 1− x This is the third tentacle we were looking for.

The trick used above to find the tentacles can be quite explicitly described. A way
to do this is using the tropical semi-ring.
Suppose we have a polynomial in two variables f(z1, z2) =

∑
i,j aijz

i
1z
j
2. Then the

valuation of an individual summand is as follows:

v(aijz
i
1z
j
2) = v(aij) + iv(z1) + jv(z2)

For a point (z1, z2) ∈ C we have that the valuation of all of these summands add
up to zero.

Remark 7.23. Note that this should be seen as follows: a condition on the valuation
of one coordinate induces a condition on the other. From the equation f(z1, z2) = 0
one might get the impression that we should impose the condition v(f(z1, z2)) =
v(0) =∞, but this is definitely not the case since we don’t want the function to be
identically zero but only locally.

Either way we have that at least two of the valuations must be equal to each other
or otherwise we wouldn’t have any cancellations. Thus we have the condition that
at a point on the tropical curve the minimal valuation should occur at least twice
among the summands. We can paraphrase this as follows: at a point on the tropical
curve we have that in the tropical polynomial

Trop(f)(x, y) = g(x, y) := min{v(aij) + ix+ jy}
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the minimum should be attained at least twice. We give this a special name:

Definition 7.24. (Corner Locus) The points in R2 where a tropical polynomial
in two variables takes on the minimum at least twice is known as the Corner locus
of the tropical polynomial.

Thus we have shown that any tropical curve is contained in the corner locus of its
tropicalisation. The converse inclusion holds as well and is known as Kapranov’s
Theorem or the ”fundamental theorem of tropical geometry”.

Theorem 7.25. (A version of Kapranov’s Theorem) For any plane curve C ⊂ P2

with defining polynomial f we have that the following two sets coincide:

• The tropical plane curve Trop(C)
• The corner locus of the tropical polynomial Trop(f)(x, y)

Proof. For a proof see [Kap00]. �

This theorem shows an intimate connection between tropical geometry and normal
geometry: the object obtained by using the valuation on a variety can be described
entirely by tropical polynomials. In fact we shall only use this method from now on
to tropicalise plane curves (and in particular elliptic curves).

Example 7.26. Let’s use Kapranov’s theorem to find the tropicalisation of the plane
curve given by:

t−3z1 + t−2z2 = 1

We know that the tropical plane curve is given as the corner locus of the following
polynomial:

Trop(f)(x, y) = min{x− 3, y − 2, 0}
It is now very easy to find everything we want, we just solve a couple of linear

equations. We obtain x = 3 for 0 < y− 2 or y > 2. Similarly we find y = 2 for x > 3
and y + 1 = x for y ≤ 2 and x ≤ 3. One can immediately see the benefits of using
this theorem : what used to be a tedious limit process has now turned into 3 very
simple linear equations.

Remark 7.27. Adding a constant value to all of the v(aij) corresponds to a translation
of the tropical curve. This is basically just dividing/multiplying by a certain power
of t in the original equation.

7.4. Newton Subdivision. Even for such tropical polynomials it can still become
quite tedious to solve all of these linear equations (and inequalities) by hand. There
is an easy way which is known as the Newton subdivision which makes a compact
graph from the data available which essentially contains all of the information needed
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to draw the corresponding tropical graph. We first give the algorithm and then try
to clarify the process.
Let f =

⊕
i,j aijx

iyj be a tropical polynomial. For every aij 6= 0 we associate the

following set of points to the tropical polynomial: (i, j) ∈ N2. These form a lattice.
Call this lattice Λ. We give an algorithm to draw a tropical curve using this lattice.
The algorithm starts by considering the points (i, j, aij) ∈ R3. We then take the
convex hull of these points:

W = ConvexHull{(i, j, aij)}

Now project the lower part of W back to the lattice Λ to create a subdivision of Λ.
Put differently: we get a convex polygon W which has edges. We project the lower
edges back onto the lattice Λ. This subdivision is called the Newton subdivision
of f : L. We then have the following correspondence:

• Every edge of the Newton subdivision L corresponds to an edge of the tropical
curve. These corresponding edges lie in orthogonal subspaces. That is, the
edge of L will be orthogonal to its corresponding edge in the tropical curve.
• Every interior edge of the Newton subdivision corresponds to a bounded edge

of the tropical curve.
• Every outer edge of the Newton subdivision corresponds to an unbounded

edge (or: ray) of the tropical curve.

We now explain this algorithm by studying the tropical curve locally. Throughout
this explanation one should keep an eye on Figure ??. Suppose we have a tropical
curve in R2. This curve is a union of line segments all emanating from certain points.
Suppose we take such a vertex V . If we take this V as a new origin in R2 then we
can locally describe the tropical curve as lines emanating from this origin. We can
therefore locally define the tropical curve by a tropical polynomial which takes the
following form:

g(x, y) =
⊕
i

x1
a1(i) � x2a2(i)

where a1(i), a2(i) ∈ N. Now plot these points a(i) := (a1(i), a2(i)) in N2 and
let ∆ be the convex hull of these points. This will be a convex polygon in R2.
Our first claim is that the tropical curve only depends on the outer edges of this
convex polygon ∆. This is because it is impossible for an interior point that the
expression a1(i)x1 + a2(i)x2 is smaller than the others. We can therefore delete the
terms corresponding to interior points.
From the definition of a tropical curve we know that we must now solve linear
equations. These are given by:

a1(i)x1 + a2(i)x2 = a1(j)x1 + a2(j)x2
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Figure 6. The local construction of the Newton subdivision

If any more equations were used then we would obtain an overdetermined system
which only yields the solution (0, 0) corresponding to the vertex. The next claim is
that we only have to use the equations for adjacent vertices. Let us first see why the
tropical curve should be orthogonal to the edges defined by adjacent vertices. When
solving such a linear equation we can rewrite this expression as an inner product:

(a1(i)− a1(j))x1 + (a2(i)− a2(j))x2 = 0

but the vector used in this inner product is exactly the direction vector of the edge
linking the points (a1(i), a2(i)) and (a1(j), a2(j)). So now we know that the points on
the tropical curve should be in a subspace of R2 orthogonal to the edge defining them.
Now if the defining points weren’t adjacent, then there would be a point (a1(k), a2(k))
closer to this orthogonal subspace. Consequently the expression a1(k)x1 + a2(k)x2
would be smaller than the ones defining the subspace, which means that the mini-
mum is not attained.

This shows how to construct the Newton subdivision once the local defining equa-
tions are known. It is usually hard to immediately see these local equations directly.
Computing the convex hull in R3 boils down to finding these local equations. Locally
we have that the terms with the lowest valuation will have the most influence, which
gives some idea as to why we take lower part of the convex hull of the points (i, j, aij).

Remark 7.28. When considering a tropical curve we sometimes only give the Newton
subdivision, where it is understood that curves with the same Newton subdivision
give rise to the same tropical curve (up to a translation).

The last thing we need from these Newton subdivisions is direction vectors.
Every edge in the Newton subdivision defines a direction. We formalise this as
follows:
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Definition 7.29. Let L be the Newton subdivision of f . Let T be an edge in this
subdivision with endpoints (x1, y1) and (x2, y2). We define the direction vector
vec(F ) = (y2 − y1, x1 − x2).

Remark 7.30. Note that this direction vector is perpendicular to the edge used to
define it. By definition of the Newton subdivision it lies in the same direction as the
corresponding tropical edge.

7.5. Tropical Elliptic Curves. In this section we shall explain what a tropical
elliptic curve is. We start with an elliptic curve over P . In order to have proper
tropicalisations we need a more general form for an elliptic curve than the ordinary
reduced Weierstrass equation. To that end we quickly explain how we can consider
more elliptic curves using the Newton polygon and the corresponding Newton
subdivision. These will tell us whether a given curve has genus 1.

From section (5) we know that an elliptic curve is a curve of genus 1 with a specified
base point O. Using the Riemann-Roch Theorem one can always put such an elliptic
curve in Weierstrass form. We now seek more general forms however. A way to do
this is using Newton polygons. Suppose that we have a plane curve defined by

(43) f =
∑
i,j

aijx
iyj

where aij ∈ P . Now consider the points (i, j) in N2 for which aij 6= 0. Call the set
of these points Λf ⊂ N2.

Definition 7.31. Let Λf be as before. Then we define the Newton polygon of f
to be Nf := ConvexHull(Λf ).

The following theorem now tells us how to find the genus of such a curve:

Theorem 7.32. Let f be as in (43) and Nf its Newton polygon. Then the genus of
the curve defined by f is at most the amount of interior lattice points of Nf . If f is
smooth then the genus is equal to the amount of interior lattice points.

Remark 7.33. For more explanation on Newton polygons, see [Kob84]

Thus we can characterise elliptic curves as being smooth curves with O and with
the Newton polygon having one interior point. This also means that we can restrict to
the triangle with vertices (0, 0), (0, 3) and (3, 0). Every elliptic curve can be brought
to a form with corresponding Newton polygon in this triangle.

Example 7.34. Suppose we have the curve E1 : y3 = x3+1. Then its Newton polygon
is just the triangle corresponding to the vertices (0, 0), (0, 3) and (3, 0) which has
(1, 1) as an interior point. Thus this curve has a maximal genus of 1. The partial
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derivatives are zero at (x, y) = 0 which is not a point on the curve, making this curve
nonsingular. It therefore has genus 1.

Example 7.35. Let E2 be the curve defined by the equation

b+ 2
√
axy + x2y + y2x = 0

for a, b 6= 0. It has one interior point so it has at most genus 1. The partial
derivatives are also never zero, so it indeed defines a smooth elliptic curve. We can
actually almost see the Weierstrass form. If we homogenise this equation with z then
we obtain:

(44) bz3 + xyz + x2y + y2x = 0

Dehomogenising with respect to y now leads to:

(45) bz3 + xz + x2 + x = 0 or x2 = −bz3 − xz − x
which is in Weierstrass form. We therefore see that the original equation is an

affine piece of the entire projective elliptic curve. This particular curve will be used
in the main theorem of this thesis.

Definition 7.36. Let E be an elliptic curve over P defined by the polynomial f .
We define the tropical elliptic curve corresponding to f as Trop(Ef )

Remark 7.37. (Important) Note that this definition relies enormously on the f
used for the tropicalisation. In fact we have that two isomorphic elliptic curves can
give rise to entirely different tropical elliptic curves. This makes the definition non-
intrinsic, but it at least gives a place to start. We give an example to demonstrate
this phenomenon.

Example 7.38. Consider the elliptic curve E3 defined by

y2 = x3 + Ax+B

for A,B ∈ P . Then the tropicalisation depends on the valuation of A and B, but
combinatorially we have two possibilities as can be seen in figure (7). The second
subdivision gives rise to the tropical curve in figure (8).

Example 7.39. Consider again the elliptic curve E2 defined by

b+ 2
√
axy + x2y + y2x = 0

for a, b 6= 0 and v(a) = 0 and v(b) > 0. The tropical elliptic curve has a Newton
subdivision and tropical curve as can be seen in figure (9).

What is different in this last elliptic curve is that we have a bounded complex
in the middle. In fact we have that for a large class of elliptic curves that they
contain such a complex. This bounded complex serves as the tropical analogue of
the j-invariant. We study this tropical j-invariant in the next section.
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(a) Possibility 1 (b) Possibility 2

Figure 7. Newton subdivisions for Weierstrass equations

Figure 8. Tropical curve for the marked subdivision in fig. (7b)

(a) Subdivision (b) Trop(E2)

Figure 9. The tropical versions of E2
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Remark 7.40. The curves E2 and E3 are actually isomorphic, as we will show in
our main theorem. Thus we have that two isomorphic elliptic curves have distinct
tropicalisations: one doesn’t have a bounded complex and the other one does.

7.6. Cycles and Tropical j-invariants. In this section we study this bounded
complex in more detail. It is more commonly known as the cycle of the curve.
An important quantity of a tropical elliptic curve is the cycle length. This can
be used to define a tropical counterpart of the normal j-invariant: the tropical
j-invariant. This tropical j-invariant is an invariant of tropical morphisms (see
[BPR11] or [Mik06]). At the end of this section we shall give the theorem derived by
Katz, Markwig and Markwig in [KMM00]. This theorem links the two j-invariants.
We begin with a proper definition of a cycle.

Definition 7.41. Let Trop(E) be a tropical elliptic curve. Suppose that the point
(1, 1) is visible as a vertex of a polygon ∆′ ⊂ Nf . By visible we mean that there at
least three lines emanating from (1, 1) in the Newton subdivision. We then say that
Trop(E) has a cycle.

Remark 7.42. Let us give an alternative description of this cycle. The lines emanat-
ing from the point (1, 1) all lie within the Newton polygon and thus correspond to
bounded edges. Since the lines orthogonally correspond to edges, we need at least
three lines to ”go around a point”. These edges thus create a connected bounded
complex, a cycle.

Example 7.43. Let E be an elliptic curve with reduced Weierstrass form

y2 = x3 + Ax+B

As we saw in Example 7.38, any elliptic curve given by such a Weierstrass form has
no cycle. Since every elliptic curve over P can be brought in this form using the
Riemann-Roch Theorem, we have that cycles are not preserved by isomorphisms.

Every edge, Gi, of the cycle corresponds to an edge of the Newton subdivision.
Thus for every Gi we have a specific direction vector: Fi. To every such edge Gi

of the cycle we can associate a special length:

l(Gi) =
||Gi||
||Fi||

where || · || is the normal Euclidean length.

Remark 7.44. This weight factor ||Fi|| is introduced to obtain a value in Q for l(Gi).

We can now define the cycle length:
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(a) Newton
subdivision

(b) Tropical curve

Figure 10. Tropical forms of f4

Definition 7.45. Let E be an elliptic curve over P with defining equation f and let
Trop(E)f be the corresponding tropical elliptic curve. If Trop(E)f has a cycle, then
we define the cycle length as:

C(E) :=
∑

l(Gi)

Remark 7.46. This cycle length shall also be referred to as the tropical j-invariant:=
jtrop.

Example 7.47. Let E4 be the elliptic curve defined by

f4 = xy + t · (y + x+ x2 + x2y2) + t3

The tropicalisation of f is:

Trop(f)(x, y) = min{x+ y, 1 + y, 1 + x, 1 + 2x, 1 + 2x+ 2y, 3}
We can also consider the corresponding Newton subdivision L as is depicted in

Figure 10a. To see why this makes sense, note that all the terms have valuation 1
except the ones corresponding to (0, 0) and (1, 1). This also gives the tropical curve
as you can see from Figure 10b.

The tropical elliptic curve has a cycle and hence we can calculate its cycle length.
To do this we need the length of the direction vectors. Notice that there are two
direction vectors of length 1 and two of length

√
2. The Euclidean length of the

edges in the tropical curve are as follows:

||G1|| = 1, ||G2|| = 3 ||G3|| =
√

2 · 2 ||G4|| =
√

2 · 1
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This length is then normalised by the length of the direction vectors which gives:

C(E) = 1 + 3 + 2 + 1 = 7

This cycle length can be related to the valuation of the original j-invariant under
certain conditions. This is the essence of the next theorem:

Theorem 7.48. [KMM00] Let E be an elliptic curve defined by the polynomial f .
If Trop(f) has a cycle and if it induces a triangulisation in the Newton subdivision
then

v(j(E)) = jtrop

Remark 7.49. A triangulisation of the Newton subdivision is a subdivision of the
Newton polygon which consists entirely of triangles.

Note that this is a theorem on a particular equation of the elliptic curve. If Trop(f)
has (1, 1) as a visible point in the Newton subdivision and if the subdivision is a
triangulisation then we have that the theorem holds. Thus if we take an isomorphic
elliptic curve which does not induce a triangulisation then we can get different results.

Example 7.50. Consider the tropical elliptic curves as in Figures 11 and 12. We have
that the first curve in Figure 11 does not induce a triangulisation, although it does
have a bounded complex. Note however that this curve can be written as the union
of three tropical lines! The bounded complex is therefore just a coincidence: it is
not a property of the elliptic curve. It can be shown that it does not have the right
cycle length.
The second curve in Figure 11 does induce a triangulisation, but it does not contain
(1, 1) as a visible point. It therefore does not have a cycle. This curve is actually the
tropical equivalent of a biquadratic curve (something with tropical genus 0). It also
does not have the right cycle length.
The first curve in Figure 12 is an example of a proper tropical elliptic curve: the
subdivision is a triangulisation and (1, 1) is a visible point. The second curve however
does not induce a triangulisation.
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Figure 11. Two curves without a triangulisation

Figure 12. One curve with a triangulisation and one without

8. Main Theorem

We conclude this thesis by proving the main theorem. From [KMM00] we know
that every elliptic curve over P with v(j) < 0 that induces a triangulation in the
Newton subdivision will have a cycle in its corresponding tropical curve with cycle
length equal to −v(j). Here we consider another question. Suppose that we are
given an elliptic curve with j-invariant j. Can we find an isomorphic elliptic curve
such that its tropicalisation has cycle length equal to −v(j)? We do this by explicitly
giving the isomorphic elliptic curve.
We’ll use the following notation in this section:

• If f is the polynomial defining the elliptic curve, then Trop(f) is its corre-
sponding tropical polynomial
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• If Cf is the curve corresponding to f , then Trop(Cf ) is the corresponding
tropical variety
• ∆ will be the marked subdivision of Trop(E)
• C(E)f is the cycle length of a tropical elliptic curve with equation f

The main idea of how to find an isomorphic elliptic curve with the right tropicali-
sation is as follows. We know that an elliptic curve with v(j) < 0 has multiplicative
reduction by Theorem 6.12. We take a point of order 3 and then put the equation in
a particular Weierstrass form. This Weierstrass form can then be transformed to an
elliptic curve not in Weierstrass form such that the tropicalisation has a cycle. We
then calculate the cycle length, which will be equal to −v(j). Let us now precisely
state the theorem:

Theorem 8.1. (Main Theorem) For every elliptic curve over P with v(j) < 0,
we can find an isomorphic elliptic curve E ′ such that:

• Trop(E ′) has a cycle
• C(E ′) = −v(j(E))

Remark 8.2. Several remarks are in order. First of all, since every elliptic curve over
a field of characteristic zero can be brought to the form y2 = x3 +Ax+B, we know
that we can always find an elliptic curve such that it has no cycle by Example 7.43.
One might wonder if the cycle length found in this particular theorem is not just a
coincidence (i.e. can we find an isomorphic elliptic curve with any arbitrary cycle
length and thus also with cycle length equal to −v(j)?).

Katz, Markwig and Markwig showed that any tropical elliptic curve with a trian-
gulation inducing a cycle must have cycle length equal to −v(j). We can however
obtain ”elliptic curves” which do not induce a triangulation. This leads to the defini-
tion of so-called faithful representations of the tropicalisation process (see [BPR11]).
These faithful representations require the tropicalisation to map a finite subgraph
Γ homeomorphically and isometrically to its image. It can be shown that faithful
representations have the correct cycle length. These faithful representations lead
to ”proper” tropical elliptic curves. The theorem we prove here shows that we can
explicitly find an elliptic curve which is faithfully represented by the tropicalisation
mapping.

Proof. Let E be an elliptic curve with v(j) < 0 over the field P . We can find an
isomorphic curve which is minimal according to Lemma 6.8. Then this curve has
multiplicative reduction according to Theorem 6.12 . Every elliptic curve can be put
in ”bi” form, which amounts to saying that we put it in the following form:

(46) y2 = x3 + b2x
2 + b4x+ b6



68 PAUL HELMINCK

This new Weierstrass form has the same discriminant by Lemma 6.3 and it is also
minimal. Thus we have that v(bi) ≥ 0 for all bi.
Now take a point P of order 3 on the elliptic curve. Such a point always exists, as
was shown in Example 5.11. In fact we can take our point P to reduce to a singular
point of Ẽ by Theorem 6.15. Suppose that P = (x0, y0). Then we can perform a
Weierstrass coordinate change φ given by

• x→ x− x0
• y → y

such that P ′ = φ(P ) has coordinates P ′ = (0, y0) and such that P ′ is still of order 3.
Note also that v(y0) ≥ 0 by Nagell-Lutz. This isomorphic curve is still minimal.
We give a small lemma which shows that this form can be written such that the
reduction is immediately apparent.

Lemma 8.3. Suppose that P = (0, y0) is a point of order 3 for a Weierstrass equation

y2 = x3 + b2x
2 + b4x+ b6

Then b4
2 + 4b2b6 = 0 or in other words, the equation can be written as

y2 = x3 + a(x− b)2

Proof. We check that b4
2 + 4b2b6 = 0. Let us paraphrase ”P = (0, y0) is a point of

order 3” a bit. We know that this is equivalent to 3P = O. Such a point P is called
a flex point. In this case this means that if we take the tangent line through this
point, then it must intersect the elliptic curve three times at the point P .
We therefore compute the tangent line at this point. It is given by the equation:

(
∂f

∂x
(0),

∂f

∂y
(y0)) · (x, y − y0)T = 0

where y0 =
√
b6 by virtue of the equation for the elliptic curve. Calculating the

partial derivatives yields:

b4x+ 2y0(y − y0) = 0

We can assume thaty0 6= 0 because otherwise we would have a singularity on our
curve. We write y in terms of x as:

y =
−b4x+ 2y0

2

2y0
⇒ y2 =

b24x
2 − 4y0

2b4x+ 4y0
4

4y02

Equating this to y2 = x3 + b2x
2 + b4x+ b6 yields the following equation for x:

x3 + (b2 −
b4

2

4y02
)x2 + (b4 + y0b4)x+ (b6 − y02)



TROPICAL ELLIPTIC CURVES AND j-INVARIANTS 69

We know that y0
2 = b6. In fact we know that x = 0 is a triple root of this equation

because we want the tangent line to intersect in x = 0 three times. This also means

that the coefficient of x2 is 0. But this means (b2−
b4

2

4y02
) = 0 which yields the desired

result.
The previous quantity is equal to the discriminant of the polynomial b2x

2 + b4x+ b6
(as can be checked using the high school formula). This means that the discriminant
of this polynomial is zero, which means that it has a double root. Consequently we
have that for some a and b:

y2 = x3 + a(x− b)2

as desired. �

Remark 8.4. For our case, we obtain from multiplicative reduction the conditions
v(a) = 0 and v(b) > 0. To see this, note that if v(a) > 0 then the reduced curve
would be

y2 = x3

which is known as additive reduction, contradicting minimality (because minimal
models cannot have additive reduction by Corollary 6.11). Suppose now that v(b) =
0. Then the reduced curve would be nonsingular, which contradicts multiplicative
reduction.

Using this lemma we can now write our equation in the form

(47) y2 = x3 + a(x− b)2

where v(a) = 0 and v(b) > 0 by Remark 8.4. Now perform the following coordinate
change:

• f =
x2

y −
√
a(x− b)

• g =
x2

y +
√
a(x− b)

This coordinate change is regular except at the points P and −P . We can switch to
projective space to remedy this problem. In projective space the coordinate change
takes the form:

• x 7→ x2

yz −
√
a(xz − bz2)

• y 7→ x2

yz +
√
a(xz − bz2)
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• z 7→ zy2

x3 + ax2z − 2abxz2 + ab2z3

Note that on the affine piece defined by z = 1 (”piece of affine space in projective
space”) this indeed gives the previous coordinate change. Our definition of projective
morphism now allows us to locally multiply the map by a suitable function h. We
need to know exactly what kinds of zeros and poles these functions have.

This is answered as follows: f =
x2

y −
√
a(x− b)

has a zero of order 2 at P and a pole

of order 1 at −P . This can be checked by using divisors (see [Silv09] or [Har77] for
an explanation on divisors). Similarly we have that g has a zero of order 2 at −P and
a pole of order 1 at P . We want to get rid of these poles locally. This can be done
by choosing a function h with a zero at P and then multiplying all the projective
coordinates by this function. This makes the function regular at P . Similarly we
can make the coordinate change regular at −P by multiplying the coordinates by a
function h with a zero at −P .
Either way we have that this coordinate change gives a morphism (locally in the
affine version) to a yet undetermined variety. Let us first find the inverse of the
coordinate change. The coordinate x can be recovered by noticing

(48) f · g = x

To solve for y, note that (y −
√
a(x− b)) · f = x2. But we already know x in terms

of f and g. We can thus write:

y =
x2

f
+
√
a(x− b) = fg2 +

√
a(fg − b)

Plugging in x and y in the defining equation yields the following equation in terms
of f and g:

(49) f 2g + 2
√
afg + fg2 + b = 0

Remark 8.5. The maps f 7→ f · g and g 7→ fg2 +
√
a(fg − b) are polynomials in f

and g and thus the inverse coordinate change is also a morphism. Consequently we
have that the coordinate change is an isomorphism. This means that the j-invariant
is the same for both curves.

Note that we already studied this variety and its tropicalisation in Example 7.39.
We have that v(

√
a) = 0 and v(b) > 0.

Since the only contributing valuation is the one from the (0,0) coefficient ”b”, we
get a Newton subdivision as in Figure 13. This means that the elliptic curve indeed
induces a triangulation with a cycle (due to the (1,1) term). This picture can also
be obtained by looking at the (rather simple) tropical polynomial:
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Figure 13. The tropical versions of E

(50) f = min{2x+ y, 2y + x, x+ y, v(b)}

The corners correspond to the following systems:

• 2x+ y = 2y + x = x+ y, or x = y = 0
• 2y + x = x+ y = v(b) or y = 0 and x = v(b)
• 2x+ y = x+ y = v(b) or x = 0 and y = v(b)

These corners form a triangle, which incidentally is the cycle we were looking for.
Call the two short edges e1 and e2. Call the long edge e3. The two short edges both
have length v(b). The long edge has length

√
2v(b).

In calculating the cycle length we have to compare the Euclidean lengths computed
above with the lengths of the corresponding edges in the Newton subdivision. The
direction vectors corresponding to these edges (respectively) are:

(51) (1, 0), (−1, 0) and (1, 1)

with lengths 1, 1, and
√

2 respectively. In calculating the cycle length one has to
divide the length of the edge in the tropical curve by the corresponding length of the
direction vector in the Newton subdivision. One can immediately see that the cycle
length will be 3v(b).

Now for the j-invariant of the elliptic curve in question. We know that the elliptic
curve has multiplicative reduction, so the valuation of the nominator will be zero.
So we only need the valuation of the discriminant. We calculate the discriminant of

y2 = x3 + a(x− b)2

and obtain:

∆ = 884736a4b5 + 442368a4b4 + 1990656a3b4 + 884736a3b3 − 746496a2b4
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But v(a) = 0 and v(b) > 0 so v(884736a3b3) = 3v(b) is less than the rest. By
Proposition 3.4 this implies that v(∆) = 3v(b) and so v(j) = −3v(b). This equals
minus the length of the cycle, which concludes our proof.

�
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