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Abstract

An upper limit for the deuteron and proton electric dipole mo-
ment (edm) are obtained using spectroscopic data. Following Stern-
heimer [1], the corrections to the deuterium energy levels due to the
supposed deuteron electric dipole moment are obtained using second-
order perturbation theory. Equating these corrections to the maximum
allowed by the appropriate agreement between the theoretic energy lev-
els and experimental spectroscopic values gives an upper limit for the
deuteron edm of 8.8 · 10−16

e · cm. Updating similar calculations for
hydrogen by Sternheimer gives an upper limit for the proton edm of
1 · 10−14

e · cm.
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1 Introduction

Initially, the existence of an electric dipole moment (edm) on elementary
particles, baryons and nuclei was deemed impossible, since mirror symmetry
(parity conservation P ) and time symmetry (time-reversal invariance T )
were assumed [2]. After all, a parity operation (�r → −�r) would change the
sign of the edm while leaving the spin direction unchanged. In a similar
vein, a time-reversal operation (t → −t) would reverse the spin direction
while leaving the sign of the edm unchanged. Therefore, since an edm must
lie along the particle spin [3], both operations produce the same distinct
particle with an edm of the opposite sign. Since this particle does not exist,
an edm would destroy the assumed symmetry.

When Wu [4] and Christenson et al. [5], however, discovered the non-
conservation of P in Beta decay and the violation of T in K

0 decay re-
spectively, the notion of a mirror and time symmetry violating edm became
viable. The physics community has been searching for electric dipole mo-
ments on elementary particles, baryons and nuclei ever since. Even though
the present results are all consistent with the nonexistence of the searched
for edms, the limits set have had decisive influence on elementary particle
physics. Traditional experiments observed how an external electric field af-
fects the supposed edm. Since an electric field accelerates charged particles,
only neutral particles could be examined, rendering the neutron standard
candidate for edm experiments. As shown in Fig. 1, the upper limit for the
neutron edm (dneutron) has been narrowed down over the past five decades.
The current experimental upper limit is 1.6× 10−26

e · cm [6]. Although the
standard model of elementary particles (SM) predicts edms that are much
smaller (e.g. dneutron ∼ 10−32

e · cm), other plausible models, such as the
supersymmetry model, predict larger edms with values just below the cur-
rent experimental limits. These models predict the discovery of edms in the
near future and could, in contrast with SM, help to explain the particle-
antiparticle asymmetry in our universe [7]. As noticed by Sakharov, this
asymmetry requires more P and T violation than predicted by SM [8].

The edm of the proton, neutron, deuteron (i.e. a deuterium nucleus)
and the Helium-3 nucleus play a complementary role in our quest to explain
P and T violation [9]. Although the edms of charged particles cannot be
measured directly by traditional methods, a new method using a magnetic
storage ring and a radial electric field is proposed to measure the edm of
the deuteron [10] [11]. The deuteron is an attractive candidate for this
experiment since it is relatively simple and well understood. Furthermore,
the sensitivity aimed at by this new method, 10−27

e · cm, will indirectly
improve upon the neutron and proton edm by a factor of 60 to 100 and 104

respectively.
The aim of this paper is to set a theoretical upper limit for the deuteron

edm, since currently no upper limit can be found in literature [6]. Follow-
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Figure 1: Upper limits for the neutron edm during the past five decades.

ing Sternheimer [1], the perturbations of the 1S
1
2 , 2S 1

2
and 2P 1

2
deuterium

energy levels by a possible electric dipole moment of the deuteron will be
obtained using perturbation theory. Equating this correction to the energy
levels to the maximum allowed by the approximate agreement between the
experimental and theoretical values of the energy levels will give an upper
limit for the deuteron edm. Furthermore, Sternheimers upper limit for the
proton edm will be updated using recent proton spectroscopy data.

2 The Procedure:

Second-Order Perturbation Theory

The shifts of the deuterium energy levels due to the supposed electric dipole
moment of the deuteron are obtained using perturbation theory. Since the
first-order correction to the energy E1 vanishes (Appendix A), the second-
order perturbation of the energy E2 is required. E2 is obtained from the
first-order perturbation of the wave function Ψ1, which is determined by the
following equation:

(H0 − E0)Ψ1 = −H1Ψ0, (2.1)

where H0, E0, and Ψ0 are the unperturbed Hamiltonian, energy and wave
function respectively [12]; H1 is the perturbation due to the electric dipole
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moment �d:
H1 = −�d · �Ee = −A

r2
�σ · r̂, (2.2)

where H1 is in Rydberg units; �d has magnitude d and is in the direction of the
deuteron spin; �Ee is the electric field of the electron; r is the distance from
the nucleus in units of the Bohr radius aH ; A is a dimensionless constant
given by

A = 2d/(eaH); (2.3)

�σ is the spin vector of the deuteron (in units h̄), which is a spin 1 particle;
and r̂ is a unit vector in the direction of �r. Eq. (2.1) can be written in
Rydberg units as

�
− d2

dr2
+

L̂
2

r2
− 2

r
+

1
n2

�
Ψ1 =

A

r2
�σ · r̂Ψ0, (2.4)

where n is the principal quantum number of the unperturbed state
(E0 = −Z

2

n2 Ry).
After Ψ1 is determined from Eq. (2.1), the level shift E2 is obtained

from the following equation:

E2 =
�

Ψ∗
0H1Ψ1dV, (2.5)

where the integration extends over the volume of the atom and Ψ∗
0 denotes

the complex conjugate of Ψ0 [12].
At this point, two preliminary notions are worth mentioning. First, since

the unperturbed wave functions can be separated in a radial and an angular
part, and since the operator �σ · r̂ affects only the angular part, solving
Eq. (2.1) will involve the following radial equation:

�
− d2

dr2
+

l(l + 1)
r2

− 2
r

+
1
n2

�
u
�
1 =

A

r2
u
�
0, (2.6)

where u
�
1 is r times the radial part of the perturbation Ψ1, u

�
0 is r times the

radial part of the unperturbed function Ψ0 and l is the azimuthal quantum
number of the perturbation.

Second, for the states we are considering (i.e. the 1S 1
2
, 2S 1

2
and 2P 1

2

states of the deuterium atom) it will turn out that, as a result of the per-
turbation H1, the ns states are excited into p states and the np states are
excited into both s and d states. After solving analytically the radial per-
turbations u

�
1 for ns→p, np→s and np→d from Eq.(2.6), one can obtain

the following radial integrals

E
�
2 =

� ∞

0
u
�
0u

�
1H

�
1dr, (2.7)
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where H
�
1 = −A/r

2 is the radial part of H1. As will be shown below, these
are the only radial integrals necessary for calculating the energy shifts. The
values of E

�
2 for 1s→p, 2s→p, 2p→s and 2p→d, as obtained by Sternheimer

in Section 3 [1] using a theorem proven by Feinberg [13] (Appendix B), are
as follows:

E
�
2(1s→p) = −A

2
, (2.8)

E
�
2(2s→p) = −1

8
A

2
, (2.9)

E
�
2(2p→s) =

1
24

A
2
, (2.10)

E
�
2(2p→d) = − 1

48
A

2
, (2.11)

where all of the E
�
2 are in Rydberg units1.

Before applying the above mentioned procedure (using the two notes) to
the 1S 1

2
, 2S 1

2
and 2P 1

2
states of the deuterium atom in order to determine

E2 in terms of the radial integrals E
�
2, we briefly repeat the hyperfine struc-

ture interaction. The magnetic moment due to the total electronic angular
momentum of deuterium �J interacts with the magnetic moment due to the
nuclear spin of the deuteron �I, resulting in a splitting of the energy levels,
called the hyperfine structure [14]. Since the nuclear spin quantum number
of the deuteron I = 1, the 1S 1

2
, 2S 1

2
and 2P 1

2
terms are all split into two lev-

els, F = 1
2 and F = 2

3 (see Fig. 2). Here F is the total angular momentum
of the atom with �F = �I + �J .

3 Calculation of the Energy Level Shifts

3.1 E2(1S 1
2
, F = 3

2)

We are now ready to calculate the second-order corrections to the deuterium
energy levels E2, starting with the F = 3

2 level of 1S 1
2
. The MF = 3

2 state
will be used, where MF is the magnetic quantum number pertaining to F,
that is, the projection of F along an arbitrary z axis. Since the energy shift
E2 is independent of the state used, one can check the results by repeating
the calculations for a different MF state.

First, using the correct Clebsch-Gordan coefficients to couple both the
orbital angular momentum L with the electronic spin S and the resulting
total angular momentum J with the nuclear spin I [17], the unperturbed
wave function Ψ0 is found to be

Ψ0 = Ψ1sη 1
2
χ1 =

�
1
2

u
�
0

r
η 1

2
χ1 (3.1)

1Although calculated for the hydrogen atom, these results also apply to deuterium.
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Figure 2: The Hyperfine Energy Levels of Deuterium. Not on scale. Transi-
tion energies were calculated using formulas from reference [14] and values
of the physical constants from reference [15] and the LBNL Isotopes Project
(http://ie.lbl.gov/toi.html), except for the 1S Lamb shift [16] and the 2S

Lamb shift (NIST, http://physics.nist.gov).

where χmI is the deuteron spin function with magnetic quantum number
mI = −1, 0, 1; ηms is the electron spin function with magnetic quantum
number ms = ±1

2 and Ψ1s =
�

1
2

u
�
0
r

is the 1s wave function normalized
according to � ∞

0

�
π

0
|Ψ1s|2r2dr sin θdθ (3.2)

where θ is the angle between the radius vector �r and the z axis [12].
For the next step, that is, determining Ψ1 from Eq. (2.1), we need to

take a closer look at the dot product in the operator H1 = − A

r2�σ · r̂. The
unit vector r in spherical coordinates is given by




sin θ cos φ

sin θ sinφ

cos θ



 (3.3)
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whence
�σ · r̂ = σ̂x sin θ cos φ + σ̂y sin θ sinφ + σ̂z cos θ (3.4)

which can be rewritten as

�σ · r̂ =
1
2
σ̂+ sin θe

−iφ +
1
2
σ̂− sin θe

iφ + σ̂z cos θ (3.5)

where the ladder operators are given by

σ̂± = σ̂x ± iσ̂y. (3.6)

Finally, generalising the Pauli spin matrices to a spin 1 system gives

�σ · r̂ =
1√
2




0 1 0
0 0 1
0 0 0



 sin θe
−iφ +

1√
2




0 0 0
1 0 0
0 1 0



 sin θe
iφ

+




1 0 0
0 0 0
0 0 −1



 cos θ (3.7)

in the basis of χ1, χ0, χ−1 [12], which are represented by

χ1 =




1
0
0



 , χ0 =




0
1
0



 , χ−1 =




0
0
1



 . (3.8)

Applying this operator to the unperturbed wave function gives

H1Ψ0r =
�

1
2
u
�
0H

�
1η 1

2
[
�

1
2
χ0 sin θe

iφ + χ1 cos θ], (3.9)

which can be substituted in Eq. (2.1) to obtain the resulting 1s→p pertur-
bation Ψ1:

Ψ1r =
�

1
2
u
�
1η 1

2
[
�

1
2
χ0 sin θe

iφ + χ1 cos θ] (3.10)

where u
�
1 satisfies the following radial equation (cf. Eq. (2.6)):

�
− d2

dr2
+

2
r2
− 2Z

r
+

Z
2

4

�
u
�
1 = −H

�
1u

�
0. (3.11)

For the last step one needs to calculate H1Ψ1r from Eq. (3.10):

H1Ψ1r =
�

1
2
H
�
1u

�
1η 1

2
[
�

1
2
(
�

1
2
χ1 sin θe

−iφ +
�

1
2
χ−1 sin θe

iφ) sin θe
iφ

+(
�

1
2
χ0 sin θe

iφ + χ1 cos θ) cos θ]

=
�

1
2
H
�
1u

�
1η 1

2
[
1
2
χ1 sin2

θ +
1
2
χ−1 sin2

θe
i2φ

+
�

1
2
χ0 sin θ cos θe

iφ + χ1 cos2 θ], (3.12)
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whence the resulting energy shift is given by

E2 =
� ∞

0

�
π

0
(Ψ∗

0r)H1Ψ1rdr sin θdθ

=
1
2

� ∞

0

�
π

0
|η 1

2
|2u�0H �

1u
�
1|χ1|2[

1
2

sin2
θ + cos2 θ]dr sin θdθ

=
2
3
E
�
2(1s→p) = −2

3
A

2
, (3.13)

where the orthogonality of the deuteron spin functions χmI has been used.

3.2 E2(1S 1
2
, F = 1

2)

The same procedure can be employed to determine the energy level shift of
the F = 1

2 level of 1S 1
2
, using the MF = 1

2 state. The unperturbed wave
function Ψ0 for this state is given by

Ψ0 = Ψ1s[
�

2
3
η− 1

2
χ1 −

�
1
3
η 1

2
χ0]

=
u
�
0

r
[
�

1
3
η− 1

2
χ1 −

�
1
6
η 1

2
χ0] ≡ Ψ−

0 + Ψ+
0 . (3.14)

It is convenient to consider the η 1
2

and η−
1
2 terms, denoted by Ψ+

0 and Ψ−
0

respectively, separately. This is justified by the absence of matrix elements
of the operator �σ · r̂ connecting these terms.

Taking first Ψ−
0 , we have

H1Ψ−
0 r = H

�
1u

�
0η− 1

2
(
�

1
6
χ0 sin θe

iφ +
�

1
3
χ1 cos θ). (3.15)

The resulting 1s→p perturbation Ψ−
1 is given by

Ψ−
1 r = u

�
1η− 1

2
(
�

1
6
χ0 sin θe

iφ +
�

1
3
χ1 cos θ) (3.16)

where u
�
1 satisfies the following radial equation:

�
− d2

dr2
+

2
r2
− 2Z

r
+ Z

2

�
u
�
1 = −H

�
1u

�
0. (3.17)

From Eq. (3.16) one obtains

H1Ψ−
1 r = H

�
1u

�
1η− 1

2
[
�

1
12

χ1 sin2
θ +

�
1
12

χ−1 sin2
θe

i2φ

+
�

1
6
χ0 sin θ cos θe

iφ +
�

1
3
χ1 cos2 θ]. (3.18)
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The resulting energy shift due to the perturbation of Ψ−
0 is given by

E
−
2 =

� ∞

0

�
π

0
(Ψ−∗

0 r)H1Ψ−
1 rdr sin θdθ

=
1
3
E
�
2(1s→p)

�
π

0
[
1
2

sin2
θ + cos2 θ] sin θdθ

=
4
9
E
�
2(1s→p). (3.19)

Subsequently, taking the Ψ+
0 term gives

H1Ψ+
0 r = −H

�
1u

�
0η 1

2
(
�

1
12

χ1 sin θe
−iφ +

�
1
12

χ−1 sin θe
iφ). (3.20)

The resulting 1s→p perturbation Ψ+
1 is given by

Ψ+
1 r = −u

�
1η 1

2
(
�

1
12

χ1 sin θe
−iφ +

�
1
12

χ−1 sin θe
iφ) (3.21)

where u
�
1 satisfies the following equation:

�
− d2

dr2
+

2
r2
− 2Z

r
+

Z
2

4

�
u
�
1 = −H

�
1u

�
0. (3.22)

From Eq. (3.21) one obtains

H1Ψ+
1 r = −H

�
1u

�
1η 1

2
[
�

1
6
χ0 sin2

θ +
�

1
12

χ1 cos θ sin θe
−iφ

−
�

1
12

χ−1 cos θ sin θe
iφ]. (3.23)

The resulting energy shift due to the perturbation of Ψ+
0 is given by

E
+
2 =

� ∞

0

�
π

0
(Ψ+∗

0 r)H1Ψ+
1 rdr sin θdθ

=
1
6
E
�
2(1s→p)

�
π

0
sin3

θdθ =
2
9
E
�
2(1s→p). (3.24)

Combining Eq. (3.19) and Eq. (3.24) gives

E2(1S 1
2
, F =

1
2
) = E

−
2 + E

+
2 =

2
3
E
�
2(1s→p) = −2

3
A

2
. (3.25)

3.3 E2(2S 1
2
, F = 3

2 & F = 1
2)

The calculation of the energy level shifts for both hyperfine levels of 2S 1
2
,

F = 1
2 and F = 3

2 , is almost completely analogous to the previous two
subsections, except for the different value of n (i.e., 2 instead of 1) which
affects only radial equation (2.6) (cf. Eq. (3.11), Eq. (3.17) and Eq. (3.22)).
As a consequence, E

�
2(1s→p) should be substituted by E

�
2(2s→p) to obtain

E2(2S 1
2
, F =

1
2
) = E2(2S 1

2
, F =

3
2
) =

2
3
E
�
2(2s→p) = − 1

12
A

2
. (3.26)
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3.4 E2(2P 1
2
, F = 3

2)

For the F = 3
2 , MF = 3

2 state of 2P 1
2
, the unperturbed wave function Ψ0 is

given by

Ψ0 =
�

2
3
Ψ2p,1η− 1

2
χ1 −

�
1
3
Ψ2p,0η 1

2
χ1 (3.27)

where Ψ2p,ml is the 2p wave function pertaining to magnetic quantum num-
ber ml, normalized according to

� ∞

0

�
π

0
|Ψ2p,ml |

2
r
2dr sin θdθ = 1. (3.28)

Thus we have [12]

Ψ2p,1 = −
√

3
2

u
�
0

r
sin θe

iφ
, (3.29)

Ψ2p,0 =
�

3
2

u
�
0

r
cos θ, (3.30)

Ψ2p,−1 =
√

3
2

u
�
0

r
sin θe

−iφ (3.31)

where the last equation will not be needed until the next subsection. Hence,
Eq. (3.27) becomes

Ψ0 = −
�

1
2

u
�
0

r
η− 1

2
χ1 sin θe

iφ −
�

1
2

u
�
0

r
η 1

2
χ1 cos θ ≡ Ψ−

0 + Ψ+
0 . (3.32)

Taking first Ψ−
0 , one obtains

H1Ψ−
0 r = −

�
1
2
H
�
1u

�
0η− 1

2
(
�

1
2
χ0 sin2

θe
i2φ + χ1 cos θ sin θe

iφ)(3.33)

which gives the following 2p→d perturbation Ψ−
1 :

Ψ−
1 r = −

�
1
2
u
�
1η− 1

2
(
�

1
2
χ0 sin2

θe
i2φ + χ1 cos θ sin θe

iφ) (3.34)

where u
�
1 satisfies

�
− d2

dr2
+

6
r2
− 2Z

r
+

Z
2

4

�
(u�1)d = −H

�
1u

�
0. (3.35)

From Eq. (3.34) one obtains

H1Ψ−
1 r = −

�
1
2
u
�
1η− 1

2
[−1

2
χ1 sin3

θe
iφ +

1
2
χ−1 sin3

θe
i3φ

+
�

1
2
χ0 sin2

θ cos θe
i2φ + χ1 sin θe

iφ]. (3.36)
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The resulting energy shift due to the perturbation of Ψ−
0 is given by

E
−
2 =

� ∞

0

�
π

0
(Ψ−∗

0 r)H1Ψ−
1 rdr sin θdθ

=
1
4
E
�
2(2p→d)

� 1

−1
[1− cos4 θ]d cos θ =

2
5
E
�
2(2p→d). (3.37)

Taking the Ψ+
0 term gives

H1Ψ+
0 r = −H

�
1

�
1
2
u
�
0η 1

2
[{

�
1
2
χ0 sin θ cos θe

iφ

+χ1(cos2 θ − 1
3
)} +

1
3
χ1] (3.38)

where the term 1
3χ1 gives the 2p→s perturbation, while the term between

accolades leads to the 2p→d perturbation.
The 2p→s perturbation (Ψ+

1 )s is given by

(Ψ+
1 )s = −

�
1
18

(u�1)sη 1
2
χ1 (3.39)

where (u�1)s is given by
�
− d2

dr2
− 2Z

r
+

Z
2

4

�
(u�1)s = −H

�
1u

�
0. (3.40)

From Eq. (3.39) one obtains

H1(Ψ+
1 )sr = −H

�
1

�
1
18

(u�1)sη 1
2
(
�

1
2
χ0 sin θe

iφ + χ1 cos θ). (3.41)

The resulting energy shift of the 2p→s perturbation of Ψ+
0 is given by

(E+
2 )s =

� ∞

0

�
π

0
(Ψ+∗

0 )H1(Ψ+
1 )srdr sin θdθ

=
1
6
E
�
2(2p→s)

� 1

−1
cos2 θd cos θ =

1
9
E
�
2(2p→s). (3.42)

The 2p→d perturbation (Ψ+
1 )d is given by

(Ψ+
1 )dr = −

�
1
2
(u�1)dη 1

2
[
�

1
2
χ0 sin θ cos θe

iφ + χ1(cos2 θ − 1
3
)] (3.43)

where (u�1)d is determined by
�
− d2

dr2
+

6
r2
− 2Z

r
+

Z
2

4

�
(u�1)d = −H

�
1u

�
0. (3.44)
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From Eq. (3.43) one obtains

H1(Ψ+
1 )dr = −H

�
1

�
1
2
(u�1)dη 1

2
[
1
2
χ1 sin2

θ cos θ +
1
2
χ−1 sin2

θ cos θe
i2φ

+
�

1
2
χ0 sin θ cos2 θe

iφ −
�

1
18

χ0 sin θe
iφ + χ1 cos3 θ − 1

3
χ1 cos θ]

= −H
�
1

�
1
2
(u�1)dη 1

2
[
1
2
χ1 cos3 θ +

1
2
χ−1 sin2

θ cos θe
i2φ

+
�

1
2
χ0 sin θ cos2 θe

iφ −
�

1
18

χ0 sin θe
iφ +

1
6
χ1 cos θ]. (3.45)

The resulting energy shift of the 2p→d perturbation of Ψ+
0 is given by

(E+
2 )d =

� ∞

0

�
π

0
(Ψ+∗

0 )H1(Ψ+
1 )drdr sin θdθ

=
1
2
E
�
2(2p→d)

� 1

−1
[
1
2

cos4 θ +
1
6

cos2 θ]d cos θ

=
7
45

E
�
2(2p→d). (3.46)

Combining Eq. (3.37), Eq. (3.42) and Eq. (3.46) gives

E2(2P 1
2
, F =

3
2
) = (E−

2 ) + (E+
2 )s + (E+

2 )d

=
1
9
E
�
2(2p→s) +

5
9
E
�
2(2p→d)

= − 1
144

A
2
. (3.47)

3.5 E2(2P 1
2
, F = 1

2)

For the F = 1
2 , MF = 1

2 state of 2P 1
2
, the unperturbed wave function Ψ0 is

given by

Ψ0 = η 1
2
[
1
3
Ψ2p,0χ0−

2
3
Ψ2p,−1χ1]+ η− 1

2
[−

�
2
9
Ψ2p,1χ0 +

�
2
9
Ψ2p,0χ1], (3.48)

which, upon substitution of Eq. (3.29) to Eq. (3.31), becomes

Ψ0 = η 1
2

u
�
0

r
[
�

1
6
χ0 cos θ −

�
1
3
χ1 sin θe

−iφ]

+ η− 1
2

u
�
0

r
[
�

1
6
χ0 sin θe

iφ +
�

1
3
χ1 cos θ]

≡ Ψ+
0 + Ψ−

0 . (3.49)
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Taking first Ψ+
0 , we have

H1Ψ+
0 r = H

�
1u

�
0η 1

2
[
�

1
12

χ1 sin θ cos θe
−iφ +

�
1
12

χ−1 sin θ cos θe
iφ

−
�

1
6
χ0 sin2

θ −
�

1
3
χ1 cos θ sin θe

−iφ]

= H
�
1u

�
0η 1

2

�
{−

�
1
12

χ1 sin θ cos θe
−iφ +

�
1
12

χ−1 sin θ cos θe
iφ

+
�

1
6
χ0(cos2 θ − 1

3
)} −

�
2
27

χ0

�
(3.50)

where the term −
�

2
27χ0 gives the 2p → s perturbation, while the term

between accolades leads to the 2p→d perturbation.
The 2p→s perturbation (Ψ+

1 )s is given by

(Ψ+
1 )sr = −

�
2
27

χ0η 1
2
(u�1)s (3.51)

where the radial function (u�1)s satisfies the following equation:
�
− d2

dr2
− 2Z

r
+

Z
2

4

�
(u�1)s = −H

�
1u

�
0. (3.52)

From Eq. (3.51) one obtains

H1(Ψ+
1 )sr = −

�
1
27

H
�
1η 1

2
(u�1)s[χ1 sin θe

−iφ + χ−1 sin θe
iφ], (3.53)

whence the resulting energy shift due to the 2p → s perturbation of Ψ+
0 is

given by

(E+
2 )s =

� ∞

0

�
π

0
(Ψ+

0 )∗rH1(Ψ+
1 )srdr sin θdθ

=
1
9
E
�
2(2p→s)

� 1

−1
(1− cos2 θ)d cos θ

=
4
27

E
�
2(2p→s). (3.54)

The 2p→d perturbation (Ψ+
1 )d is given by

(Ψ+
1 )dr = (u�1)dη 1

2
[−

�
1
12

χ1 sin θ cos θe
−iφ

+
�

1
12

χ−1 sin θ cos θe
iφ +

�
1
6
χ0(cos2 θ − 1

3
)] (3.55)
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where the radial function (u�1)d is determined by
�
− d2

dr2
+

6
r2
− 2Z

r
+

Z
2

4

�
(u�1)d = −H

�
1u

�
0. (3.56)

From Eq. (3.55) one obtains

H1(Ψ+
1 )dr = −

�
1

108
H
�
1(u

�
1)dη 1

2

�
χ1 sin θe

−iφ + χ−1 sin θe
iφ

�
(3.57)

so that the energy shift due to the 2p→d perturbation of Ψ+
0 is found to be

(E+
2 )d =

� ∞

0

�
π

0
(Ψ+

0 )∗rH1(Ψ+
1 )drdr sin θdθ

=
�

1
324

E
�
2(2p→d)

�
π

0
sin2

θ sin θdθ

=
2
27

E
�
2(2p→d). (3.58)

We shall now consider the η−
1
2 term Ψ−

0 :

H1Ψ−
0 r = H

�
1u

�
0η− 1

2

�� 4
27

χ1 + {
�

1
12

χ−1 sin2
θe

i2φ

+
�

1
6
χ0 sin θ cos θe

iφ +
�

1
12

χ1(cos2 θ − 1
3
)}

�
(3.59)

where the term
�

4
27χ1 gives the 2p → s perturbation, while the term be-

tween accolades leads to the 2p→d perturbation.
The 2p→s perturbation (Ψ−

1 )s is given by

(Ψ−
1 )sr =

�
4
27

χ1η− 1
2
(u�1)s (3.60)

where the radial function (u�1)s is determined by
�
− d2

dr2
− 2Z

r
+

Z
2

4

�
(u�1)s = −H

�
1u

�
0. (3.61)

From Eq. (3.60) one obtains

H1(Ψ−
1 )sr =

�
4
27

η− 1
2
H
�
1(u

�
1)s[

�
1
2
χ0 sin θe

iφ + χ1 cos θ]. (3.62)

The resulting energy shift due to the 2p → s perturbation of (Ψ−
0 ) is given

by

(E−
2 )s =

� ∞

0

�
π

0
(Ψ−

0 )∗rH1(Ψ−
1 )srdr sin θdθ

=
�

4
27

E
�
2(2p→s)

�
π

0
[
�

1
12

sin2
θ +

�
1
3

cos2 θ]dr sin θdθ

=
8
27

E
�
2(2p→s). (3.63)
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The 2p→d perturbation (Ψ−
1 )d is given by

(Ψ−
1 )dr = η− 1

2
(u�1)d[

�
1
12

χ−1 sin2
θe

i2φ

+
�

1
6
χ0 sin θ cos θe

iφ +
�

1
12

χ1(cos2 θ − 1
3
)] (3.64)

where the radial function (u�1)d is determined by
�
− d2

dr2
+

6
r2
− 2Z

r
+

Z
2

4

�
(u�1)d = −H

�
1u

�
0. (3.65)

From Eq. (3.64) one obtains

H1(Ψ−
1 )dr = η− 1

2
H
�
1(u

�
1)d[

�
1
54

χ0 sin θe
iφ +

�
1
27

χ1]. (3.66)

The resulting energy shift due to the 2p →d perturbation of (Ψ−
0 ) is given

by

(E−
2 )d =

� ∞

0

�
π

0
(Ψ−

0 )∗rH1(Ψ−
1 )drdr sin θdθ

=
� ∞

0

�
π

0
|η− 1

2
|2u�∗0 H

�
1(u

�
1)d[

�
1

324
|χ0|2 sin2

θ +
1
9
|χ1|2 cos θ]dr sin θdθ

=
2
27

E
�
2(2p→d). (3.67)

Finally, combining equations (3.54), (3.58), (3.63) and (3.67) gives

E2(2P 1
2
, F =

1
2
) = (E+

2 )s + (E+
2 )d + (E−

2 )s + (E−
2 )d

=
4
9
E
�
2(2p→s) +

4
27

E
�
2(2p→d) =

10
648

A
2
. (3.68)

3.6 Summary of the Energy Level Shifts

For reasons of surveyability all the second-order corrections to the deuterium
energy levels due to the supposed deuteron edm, as calculated above, are
listed:

1S 1
2

: E2(F =
1
2
) = E2(F =

3
2
) = −2

3
A

2 (3.69)

2S 1
2

: E2(F =
1
2
) = E2(F =

3
2
) = − 1

12
A

2 (3.70)

2P 1
2

: E2(F =
1
2
) =

10
648

A
2 (3.71)

E2(F =
3
2
) = − 1

144
A

2
. (3.72)

15



These energy corrections are in agreement with the results found by Stern-
heimer [1], except for E2 (2P

1
2 , F = 1

2), which was calculated as 1
72A

2.
Although calculating this energy correction by utilising the MF = −1

2 state
might lead to the decisive answer, both results have the same order of mag-
nitude, which is all that is relevant for our purposes.

4 Upper Limit for the Deuteron and Proton EDM

In order to obtain an upper limit for the deuteron edm, the calculated cor-
rection to the 1S 1

2
− 2S 1

2
transition energy due to the supposed edm (i.e.

− 7
12A

2
Ry) is equated to the maximum allowed by the appropriate agree-

ment between the experimental and theoretical values of the transition en-
ergy. The theoretical and experimental values of the difference between the
deuterium and hydrogen 1S 1

2
− 2S 1

2
transition frequencies are reported by

Jentschura [18] [19] to be identical:
�
νD(1S 1

2
− 2S 1

2
)− νH(1S 1

2
− 2S 1

2
)
�

exp/th

= 670994334.64(15) kHz. (4.1)

Neglecting the uncertainty in the transition frequency of hydrogen [18] gives
the following difference between the theoretical and experimental transition
frequencies of deuterium:

νD(1S 1
2
− 2S 1

2
)exp − νD(1S 1

2
− 2S 1

2
)th = 0 ± 2.1 kHz. (4.2)

Here it is assumed that the experimental and theoretical uncertainties are
uncorrelated. Whether this is justified is irrelevant, since we want a conser-
vative estimate. The energy corresponding to 2.1 kHz is given by [15]

∆ED(1S 1
2
− 2S 1

2
) = 8, 69 · 10−13

eV. (4.3)

If the deuteron edm exists, this is the maximum correction to the 1S 1
2
−2S 1

2

transition energy it could produce2. Therefore, since the Rydberg constant
for deuterium is given by [15]

RD = R∞
MD

me + MD

= 13.6020 eV, (4.4)

it follows that

7
12

A
2

< 8, 69 · 10−13
/13.6020 = 6.38576 · 10−14 (4.5)

2To be precise, an edm could maximally produce an energy correction of this order
of magnitude. Detailed statistical calculations of the limits found in this section would
change them slightly, but would not be of any real consequence.
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so that
A < 3.31 · 10−7 (4.6)

and
|ddeuteron| <

1
2
e · (3.31 · 10−7) · aH = 8.8 · 10−16

e · cm, (4.7)

where the Bohr radius is given by aH = 0.529 · 10−8
cm.

Another upper limit for the deuteron edm can be determined in a similar
vein using the 1S Lamb shift. However, the experimental and theoretical
values agree only within approximately 0.1 MHz [16]. The resulting upper
limit, ∼ 2 · 10−14

e · cm, is therefore less stringent than the limit found
previously. The 2S Lamb shift, i.e. the 2S 1

2
− 2P 1

2
transition, is of no use

since no theoretical value is known in the literature.
As mentioned before, the calculations in this thesis are analogous to

Sternheimer’s calculations for hydrogen [1]. The improvement in hydrogen
spectroscopy and energy level calculation over the past five decades allows
for an update of Sternheimer’s upper limit for the proton edm. The the-
oretical and experimental values of the 1S Lamb shift by Weitz et al. [16]
and Bourzeix et al. [20] differ approximately 0.3 and 0.15 MHz respec-
tively. Ascribing these differences to the proton edm leads in both cases to
an upper limit for the proton edm of approximately 2 · 10−14

e · cm. The
theoretical and experimental values of the 2S Lamb shift by Lundeen and
Pipkin [21] differ approximately 0.03 MHz. Ascribing this difference to the
proton edm also gives an upper limit of 2 · 10−14

e · cm. However, using
instead the theoretical value calculated by Jentschura [18] lowers this limit
to 1 · 10−14

e · cm. The 1S 1
2
− 2S 1

2
transition cannot be used, since the the-

oretical value is by definition equal to the experimental value [18]. Thus,
these updated transition frequencies lower Sternheimer’s upper limit for the
proton edm, 1.30 · 10−13

e · cm, by one order of magnitude. Off course other
methods have by now obtained a much lower upper limit. The current limit
is |dproton| < 5 · 10−24

e · cm [6].

5 Discussion

Although the calculated upper limit for the deuteron edm is several orders
of magnitude higher than, for instance, the neutron and proton edm, which
suggests that the actual deuteron edm is much smaller than the found limit,
the current result is a useful first step. Further improvement might be
made by searching for an effect that varies linearly with the edm. Muonic
deuterium could also be used, since the high mass of the muon increases the
Rydberg energy by a factor of 196. This would reduce the upper limit of the
edm by a factor 14 ceteris paribus. Unfortunately there are no experimental
values of the 2S lamb shift available yet to be compared with the theoretical
values calculated by Borie [22]. However, the most promising option to find
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a deuteron edm is the recently proposed method using a magnetic storage
ring and a radial electric field [10] [11].
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Appendices

A First-Order Corrections to the Energy Levels

In this appendix the Wigner-Eckart theorem is used to explain the vanishing
of the first-order correction to the energy as mentioned in section 2. The
first order correction to the energy is given by [12]

E1 =
�

Ψ∗
0H1Ψ0dV. (A.1)

Since H1 is a superposition of spherical harmonics with l = 1 (cf. Eq. (3.5)),
every term in Eq. (A.1) is of the form

�
π

0

� 2π

0
(Y m

l
)∗Y m

�
1 Y

m
��

l
sin θdθdφ, (A.2)

where Y
m

l
denotes a spherical harmonic with azimuthal quantum number

l and magnetic quantum number m. According to a special case of the
Wigner-Eckart theorem, this integral is proportional to either the following
Wigner 3j symbol [23] [24]:

�
l 1 l

0 0 0

�
(A.3)

or equivalently to the following Clebsch-Gordan coëfficient: C(l1l; 000). Since
both are equal to zero, the first order correction to the energy level vanishes.

B Proof of Feinberg’s Theorem

In section 3 of his article [1], Sternheimer calculates the values of E
�
2 for

ns →p, np →s and np →d (cf. Eq. (2.7) to Eq. (2.11) in this thesis) after
solving analytically the corresponding radial perturbations u

�
1 from Eq. (2.6).

Hereby the following property is used, which was noticed by Feinberg [13]
and will be proven below:

� ∞

0
u
�
0(n, l1)

1
r2

u
�
0(n, l2)dr = 0, (B.1)
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where u
�
0(n, l1) and u

�
0(n, l2) are any two non-relativistic hydrogenic radial

wave functions (multiplied by r), e.g. deuterium wave functions, pertaining
to degenerate energy levels with the same n but different l; e.g. 2s and 2p.

Eq. (B.1) follows directly from inserting E1 = E2 (i.e. n1 = n2) into the
following theorem by Feinberg, which holds for the radial wave functions of
the nonrelativistic Schrödinger equation for any central potential V (r) [13]:

�
R1(r)R2(r)dr(E1 − E2) + [l2(l2 + 1)− l1(l1 + 1)]

×
�

R1(r)R2(r)dr = 0, (B.2)

where R1 = u
�
0(n1,l1)

r
and R2 = u

�
0(n2,l2)

r
are the radial wave functions for two

states with energy E1, E2 and orbital angular momentum l1, l2, respectively.
The proof of Eq. (B.2) utilises the following two radial wave equations:

1
r2

d
dr

�
r
2 dR1

dr

�
+ 2m(E1 − V )R1 −

l1(l1 + 1)
r2

R1 = 0, (B.3)

1
r2

d
dr

�
r
2 dR2

dr

�
+ 2m(E2 − V )R2 −

l2(l2 + 1)
r2

R2 = 0. (B.4)

Subtracting R1 times Eq. (B.4) from R2 times Eq. (B.3) gives, after multi-
plication by r

2,

R2
d
dr

�
r
2 dR1

dr

�
−R1

d
dr

�
r
2 dR2

dr

�
+ 2m(E1 − E2)R1R2r

2

+[l2(l2 + 1)− l1(l1 + 1)]R1R2 = 0. (B.5)

(Partial) integration over r gives

r
2
�
R2

dR1

dr
−R1

dR2

dr

����
∞

0
+ 2m(E1 − E2)

� ∞

0
R1R2r

2dr

+[l2(l2 + 1)− l1(l1 + 1)]
� ∞

0
R1R2dr = 0. (B.6)

Since Ri ∝ r
li as r → 0 and Ri ∝ e

−cr

r
as r → ∞ where c is a positive

constant [12], the first term in Eq. (B.6) vanishes, thereby yielding Fein-
berg’s Theorem, Eq. (B.2). The 2m term has accidentally been omitted by
Feinberg. This multiplicative term is however irrelevant for our purposes.
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