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Abstract

In this thesis we state and prove the theorem of Liouville. This theorem states
that every conformal map in Rn for n ≥ 3 is a composition of Möbius transfor-
mations.
Before proving this theorem, information is needed about inversion geometry,
conformal maps and Möbius transformations. These subjects are discussed in
chapters 2 to 4. In the fifth chapter the theorem of Liouville is proven. Two
different proves are given. The first just holds in R3 because triply orthogonal
systems are applied. The second is a general proof for Rn.

The picture on the front is taken from [8].
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1 PREFACE

1 Preface

In 1850 the French mathematician Joseph Liouville discovered and proved a re-
markable theorem. In this paper we wish to state his theorem and also prove it.
Liouville stated that every conformal map in Rn for n ≥ 3 is a composition of
Möbius transformations. What makes this theorem remarkable is that it doesn’t
hold in R2.
The main goal of this thesis is to explain the theories of inversion geometry,
conformal maps and Möbius transformations, eventually leading to the theorem
of Liouville. This paper consists of four chapters. A chapter is dedicated to
each subject.
Inversion geometry is discussed in the first chapter and describes how to trans-
form lines and circles into lines and circles. So a line can be mapped to a circle
and vice versa. In chapter 2 we will discuss the general theory, the construction
of inversion points, properties of inversions and at last cross ratios will appear.
After this chapter conformal maps are discussed. First, the general theory of
conformal maps will be discussed, to make clear what a conformal map is. Sec-
ondly, some examples will be discussed to get familiar with the conformal maps.
The examples are given in the form of theorems, and these theorems turn out
to be useful in the final chapters.
The third chapter is about Möbius transformations. We will discuss two types
of Möbius transformations, the general transformations and the extended trans-
formations, where also ∞ is allowed.
After the first three chapters, we have enough information to prove the theorem
of Liouville. Now we will look at two cases. First we will prove the theorem
in R3. But before this can be done, some lemmas have to be discussed. After
the proof in R3 is finished, we will look at the general case Rn for n ≥ 3. This
proof is very long and technical, and therefore a short summary of the most
important steps is given.
In this paper not all the proofs of the lemmas, propositions and theorems are
given. The most relevant proofs for the paper are given. When a proof has not
been given, there is a reference so the reader will be able to find the proof. We
expect the reader to be familiar with the basics of complex function theory and
to have some knowledge of analysis. These theories are not explained in this
paper.
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2 INVERSION GEOMETRY

2 Inversion geometry

In this chapter we will discuss inversion geometry. We will discuss this topic be-
cause it is necessary to understand our main theorem, the theorem of Liouville.
In section 2.1 the general definitions about inversion geometry will be discussed.
After this, the properties of inversions will be discussed in section 2.2. At last,
in section 2.3 cross ratios will be discussed.
How the images of points under inversion can be constructed, is shown in ap-
pendix A. We will discuss inversion geometry in Rn because all the theory holds
for Rn for n ≥ 3.

2.1 Introduction

Inversion geometry is about a point p and its inversion point I(p) with respect
to a circle or sphere. The interesting part in the inversion geometry is how
points p behave under inversion. Before we are going to talk about the behavior
of inversion points, we have to define them. See chapter 5.1 in [2].

Definition 2.1. The inversion point I(p) of p is defined as the point I(p) on
the plane through a and p such that

|p− a| |I(p)− a| = r2 (1)

where I is a map I : Rn \ {a} → Rn \ {a} (see chapter 4.1 in [3]), and |p− a|
denotes the Euclidian distance between p and a. If p lies in the interior of C,
then I(p) lies in the exterior of C and vice versa.

In the rest of this chapter, we will look at the inversion point with respect to
the sphere C with center a and radius r. Here a is a point (a1, a2, ..., an) ∈ Rn.
Furthermore, p and I(p) also are points in Rn.
With only definition 2.1, we don’t know how to find I(p) yet. Therefore, we can
find an explicit formula for I(p). To find this formula, we use formula (1).
We know that p and I(p) are on the same line , so I(p) is a multiple of the
distance between p and a, so I(p) = a + λ(p− a) with λ a constant which we
want to know. With this information, a straightforward computation shows
that I(p) is given by

I(p) = a+
(

r

|p− a|

)2

(p− a), [3], chapter 4.1 (2)

Beside this formula there exists an algebraic function that gives I(p) in coor-
dinates in the unit sphere. This function f : Rn \ {(0, ..., 0)} → Rn is given
by

I(p) = f(x1, x2, ..., xn)

=
(

x1

x2
1 + x2

2 + ...+ x2
n

,
x2

x2
1 + x2

2 + ...+ x2
n

, ...,
xn

x2
1 + x2

2 + ...+ x2
n

)
(3)

The derivation of this formula is again a straightforward computation, where
we have used that for the point p with coordinates (x1, ..., xn) it must hold that
I(p) has coordinates (kx1, ..., kxn) with k the unknown constant. See chapter

2



2.2 Properties of inversions 2 INVERSION GEOMETRY

5.1 in [2].
If C is not the unit sphere, we can use the same argument to get that

I(p) = f(x1, x2, ..., xn)

=
(

r2x1

x2
1 + x2

2 + ...+ x2
n

,
r2x2

x2
1 + x2

2 + ...+ x2
n

, ...,
r2xn

x2
1 + x2

2 + ...+ x2
n

)
(4)

2.2 Properties of inversions

In inversion geometry, there are some properties of inversions that we will use
in the next chapters. Therefore, they will be given here. The first and sec-
ond proposition sometimes are referred to as the basic properties of inversions,
[1], chapter 2.1. The third proposition is one about the behavior of inversions
themselves, [3], chapter 4.1. The first proposition gives us the images under
inversions of spheres and planes, so that we know what the inversion of a sphere
or a plane looks like.

Proposition 2.1. For the inversion sphere C with center a we have the follow-
ing properties about inversions of a sphere or a hyperplane.

• The image of a hyperplane through a under inversion is the hyperplane
itself

• The image of a hyperplane not through a under inversion is a sphere
through a

• The image of a sphere through a under inversion is a hyperplane not
through a

• The image of a sphere not through a under inversion is a sphere not
through a

The proof of this proposition is not relevant for our main theorem, therefore
we refer to [1] for the proof.
The other basic property of inversions is stated in the following proposition.

Proposition 2.2. Any circle through a pair of inversion points is orthogonal to
the circle of inversion, and, conversely, any circle cutting the circle of inversion
orthogonally and passing through a point p passes through its inversion point
I(p).

For the proof of this proposition we refer again to [1]. The third proposition
in this section is about the properties of the inversion itself.

Proposition 2.3. For a point p and its inversion point I(p) with respect to a
circle C with center a and radius r we have the following properties

• I(p) = p iff p ∈ C(a, r)

• I2(p) = p for all x 6= a

• For two inversion points I(p) and I(q) we have

|I(p)− I(q)| = r2 |p− q|
|p− a| |q − a|

for all x, y 6= a

3



2.3 Cross ratios 2 INVERSION GEOMETRY

For the proof of this proposition, we refer to [3].
So from these three propositions we know how inversions behave.

2.3 Cross ratios

In this section we will discuss the cross ratio. This cross ratio is relevant for
this chapter and the next chapters because cross ratios play a role in inversion
geometry and Möbius transformations.
We will define cross ratios in the complex case, since this will return in chapter
4 about Möbius transformations.
First, we give the definition of the cross ratio in the complex case, see [1], chapter
2.4.

Definition 2.2. The cross ratio of four points z1, z2, z3, z4 ∈ C is given by

(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

An interesting property of the cross ratio in this chapter is the following
proposition.

Proposition 2.4. Let zi, i = 1, 2, 3, 4 be four points in C. Let z′i be the inversion
point of zi with respect to C. Then

(z′1, z
′
2, z
′
3, z
′
4) = (z1, z2, z3, z4)

To see this, it is enough to know that in the complex case, inversion in a point
z with respect to a circle C with center z0 and radius r is given by z′ = z0+ r2

z̄−z0 .
The proposition now follows from direct computations. Another property of the
cross ratio is given in the next proposition.

Proposition 2.5. The cross ratio of four points is real iff the four points are
collinear or concyclic

In this proposition concyclic means that the points lie on the same circle.
The proof of this proposition is not relevant here. For the proof we refer to [1].
The cross ratios will appear to be interesting in Möbius transformations, see
chapter 4.
For more information about the proofs of proposition 2.4 and lemma 2.5, see [1]
chapter 2.4.
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3 CONFORMAL MAPS

3 Conformal maps

In this chapter, we will discuss a special kind of maps, called conformal maps.
This type of map is important for our main theorem, Liouvilles theorem.
We will discuss some general theory about conformal maps in section 3.1. The
sections 3.2 till 3.7 contain examples of conformal maps. In these examples,
some new definitions will be discussed.

3.1 Introduction

Briefly, a conformal map is a map that preserves angles. So if we have two
surfaces, S1 and S2, take the map φ : S1 → S2. Take two curves γ1(t) and γ2(t)
on S1, where these curves intersect each other with angle θ in point p. Then φ
is a conformal map if φ ◦ γ1(t) and φ ◦ γ2(t) intersect each other with the same
angle θ in the point φ(p), [8].
When we know this, a question arises. Is there an easier way to see if a map is
conformal? To see this, we have the following proposition.

Proposition 3.1. Let U be an open subset of Rn with a C1-function φ : U →
Rn. Then φ is conformal iff there exists a function κ : U → R such that
κ(x)−1φ′(x) is an orthogonal matrix for all x in U , where φ′(x) is the Jacobian
matrix of φ in x. We call κ the scale factor of φ.

Before we can use this proposition, we need to know when there exists such
a κ. To determine this, we can use lemma 3.1.

Lemma 3.1. Let A be a real n× n matrix. Then there exists a positive scalar
k such that k−1A is an orthogonal matrix iff the linear map with matrix A
preserves angles between nonzero vectors.

For the proofs of above proposition and lemma we refer to [3], chapter 4.1.
In general, this is how can be detected if a map is a conformal map. It is useful
to look at some examples, to get familiar with them and with their conformality.
The following examples are also useful for our main theorem, Liouvilles theorem.

3.2 Inner products and differential forms

In this short section, we will give a lemma to check if a function f is conformal.
We will give this lemma because we will need it in the next section about
conformality of inversions.
The lemma in this section is about inner products.

Lemma 3.2. Let f : U → f(U) be a one-to-one map where U ⊂ Rn is such
that dfx is nonsingular for all x ∈ U . Then f is conformal iff for all vectors
v, w ∈ Rn, < dfxv, dfxw >= e2σ(x) < v,w > for a real function σ on U .

The function e2σ(x) is called the conformality factor of the function f .
We refer to [1], chapter 3.3, for the proof.

3.3 Inversion in circle and sphere

In chapter 2 we discussed the general theory of inversion in circle and sphere.
So in this section, we will only look at the conformality of the inversions.

5



3.4 Stereographic projection 3 CONFORMAL MAPS

Theorem 3.1. Inversion in a circle or a sphere is a conformal map.

To prove this, we use lemma 3.2 from the previous section. The proof will
be given for inversion in a circle and after this, we will explain how it can be
extended to higher dimensions.

Proof. Without loss of generality we consider inversion I in the unit circle.
We know that in the complex case inversion in the unit circle is given by I(z) =
1
z̄ = z

|z|2 , or in Cartesian coordinates, I(x, y) =
(

x
x2+y2 ,

y
x2+y2

)
.

The derivative of I at (x, y) has matrix J given by

J =
1

(x2 + y2)2

(
−x2 + y2 −2xy
−2xy x2 − y2

)
Since

JTJ =
1

(x2 + y2)4

(
−x2 + y2 −2xy
−2xy x2 − y2

)
·
(
−x2 + y2 −2xy
−2xy x2 − y2

)
=

1
(x2 + y2)4

(
(x2 + y2)2 0

0 (x2 + y2)2

)
=

1
(x2 + y2)2

· Id

we see that for two vectors v and w

〈Jv, Jw〉 = vTJTJw

= vT · 1
(x2 + y2)2

· Id · w

=
1

(x2 + y2)2
〈v, w〉

And thus we have 〈Jv, Jw〉 = λ(x, y)〈v, w〉 with λ(x, y) = 1
(x2+y2)2 , so according

to lemma 3.2 I is conformal, so inversion in a circle is conformal.

This proof can be extended to Rn with n ≥ 3 by taking

I(x1, x2, ..., xn) =
(

x1

x2
1 + x2

2 + ...+ x2
n

,
x2

x2
1 + x2

2 + ...+ x2
n

, ...,
xn

x2
1 + x2

2 + ...+ x2
n

)
= (p1, p2, ..., pn)

and finding a λ = λ(x1, x2, ..., xn) by computing the matrix of DI again, which
is now an n × n matrix. The rest of the proof remains the same. So indeed
inversion in a circle or sphere is a conformal map.

3.4 Stereographic projection

In this section, we will talk about the stereographic projection as a conformal
map. Before we can do this we need the definition of a stereographic projection.
This requires some knowledge of the extended complex plane and the Riemann
sphere, which will be dealt with. At the end of this section we will arrive at

6



3.4 Stereographic projection 3 CONFORMAL MAPS

the conformality of the stereographic projection. The theory in this section is
mainly coming from [2], chapter 5.2.
Stereographic projection is introduced to give us a way to visualize the point∞
and to find its image under inversion. Stereographic projection, denoted by the
map π, projects the complex plane C to a so called Riemann sphere. This is a
sphere S with center (0, 0, 0) and radius 1. To make the projection, we identify
C with R2 via the map x + iy 7→ (x, y). Now each point p in C can be related
to a point p′ on S by drawing a line from the North Pole (0, 0, 1) through p.
Where this line intersects S, lies p′, see figure 1. The only point on the sphere
that will never be reached is the North pole itself, this we will relate to ∞ on
the complex plane. This means that C is extended by a point that is related to
the North Pole.

Definition 3.1. The extended complex plane is defined as Ĉ = C ∪ {∞}.

This process of relating two points can be carried out via the stereographic
projection π, which is the map π : S→ Ĉ given by

π(X,Y, Z) =
X

1− Z
+ i

Y

1− Z

for a point (X,Y, Z) on S. Conversely, the map π−1 : Ĉ→ S is given by

π−1(x+ iy) =
(

2x
x2 + y2 + 1

,
2y

x2 + y2 + 1
,
x2 + y2 − 1
x2 + y2 + 1

)
for a point x+ iy in Ĉ.
These formulas are the algebraic way to say that a line is drawn from the
North Pole to p, which was already mentioned above. Furthermore, with these
formulas it is easier to see that we can relate the North Pole to ∞. If we take
the point (X,Y, Z) = (0, 0, 1), then π(X,Y, Z) = ∞, so indeed the North Pole
is connected to the point ∞.

Figure 1: Sterographic projection, [12]

Now we know everything we need about stereographic projection. We are
now ready to look at the conformality.

7



3.5 Möbius transformation 3 CONFORMAL MAPS

Theorem 3.2. Stereographic projection is a conformal map.

In this theorem, we have the term conformal on spheres. Then we mean by
conformal that on the sphere we have to look at the tangent lines of two curves
in a point, and the images of these tangent lines intersect each other with the
same angles as the tangent lines did.

Then we mean by conformal that the tangent lines in a point are angle
preserving.
The proof is not relevant for the main theorem. Therefore, the proof will not
be given here. For the proof we refer to [1], chapter 2.2.

3.5 Möbius transformation

In this section, we will give a short overview of Möbius transformations and we
will see that a Möbius transformation is a conformal map, see [1] chapter 2.3.
In chapter 4 we will look at Möbius transformation in more detail.
A Möbius transformation is a transformation of the form

M(z) =
az + b

cz + d

Where a, b, c, d ∈ C and with ad−bc 6= 0. Furthermore, M is a map M : C→ C.
This map M can be extended to M : Ĉ → Ĉ by defining M(−dc ) = ∞ and
M(∞) = a

c .
In this section we are only interested in the conformality of Möbius transforma-
tions.

Theorem 3.3. Möbius transformations are conformal maps.

Before we can prove this theorem, we need the following lemma.

Lemma 3.3. A Möbius transformation is the composition of a translation,
inversion, reflection with rotation, and dilation, [7].

In this lemma, we see the term dilation. To understand this term, we use
the following definition.

Definition 3.2. A dilation is a map f : Rn → Rn of the form f(x) = s+ξ(x−s)
where ξ is a nonzero scalar and s is a fixed point, [14].

Now we know this, we can proof the lemma.

Proof of lemma 4.2. To see this, take four functions.

M1(z) = z +
d

c

M2(z) =
1
z

M3(z) = − (ad− bc)
c2

z

M4(z) = z +
a

c

where

8



3.6 Anti-Homographies 3 CONFORMAL MAPS

• M1 is a translation by d
c

• M2 is an inversion and reflection with respect to the real axis

• M3 is a dilation and rotation

• M4 is a translation by a
c

Now an easy computation shows us that indeed M4◦M3◦M2◦M1(z) = az+b
cz+d .

Now we can prove that a Möbius transformation is conformal.

Proof of theorem 3.3. To prove the theorem it is enough to show that each Mi,
with i = 1, 2, 3, 4 is conformal, since the composition of conformal maps is again
conformal.
M1 and M4 are conformal because a translation is a conformal map, since the
angle between two curves doesn’t change when these curves are translated.
M2 is conformal since both inversion and reflection are conformal. That in-
version is conformal, is discussed in the previous section. Also reflection is
conformal, since it doesn’t change the angle between two curves. Finally, M3

is conformal. This is true because dilation is nothing more than scalar multi-
plication, and this doesn’t change the angle between to curves. Also rotation
doesn’t change the angle, so also M3 is conformal. This means that also the
composition of the Mi is conformal, and thus M(z) is conformal.

3.6 Anti-Homographies

In this section, we first will give the definition of an anti-homography. After
that, we will look at the conformality of the anti-homographies.
An anti-homography is a transformation that looks like a Möbius transforma-
tion, only with z̄ instead of z. So an anti-homography W : Ĉ → Ĉ is defined
as

W (z) =
az̄ + b

cz̄ + d

Since an inversion in the unit sphere in the complex case is given by w = 1
z̄ ,

inversion is included in the set of anti-homographies. The most important thing
we can say about anti-homographies is the next theorem.

Theorem 3.4. Anti-homographies are conformal maps.

This result is not very difficult to see, since an anti-homography is a special
type of Möbius transformation, and Möbius transformations are conformal as
we have shown in section 3.5.
Together with the homographies or Möbius transformations, the anti-homographies
form a group, which maps lines and circles to lines and circles, see [1], chapter
2.6. See for more information chapter 4

3.7 (Anti-)Holomorphic functions

In this section, we first give the definitions of a holomorphic function and a
anti-holomorphic function. After that, we will look at the conformality of these
functions.

9



3.7 (Anti-)Holomorphic functions 3 CONFORMAL MAPS

A holomorphic function is a complex-valued function that is complex differen-
tiable in every point of C. An anti-holomorphic function z is a function that is
differentiable with respect to the complex conjugate z̄.
We also can define holomorphic and anti-holomorphic in terms of the Cauchy-
Riemann equations. For a function f = u+iv, where u = u(x, y) and v = v(x, y)
are real valued functions, we can say that

1. f is holomorphic iff f satisfies ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x .

2. f is anti-holomorphic iff f satisfies ∂u
∂x = −∂v∂y and ∂u

∂y = ∂v
∂x .

This last property can be used to check if a function f is conformal. Therefore,
we have the following theorem:

Theorem 3.5. Take f : R2 → R2 a function of class C1 with a nonvanish-
ing Jacobian. Then f as a map is conformal iff f as a function of z ∈ C is
holomorphic or anti-holomorphic.

The proof of this theorem uses the Cauchy-Riemann equations. Since the
proof of this theorem consists of a lot of computations and isn’t relevant for our
main theorem, the proof will not be given here. For the proof, see [1] chapter
4.2.

10



4 MÖBIUS TRANSFORMATIONS

4 Möbius Transformations

In this chapter, we will discuss the Möbius transformations in detail.
In section 4.1, we will discuss the general Möbius transformations. In this section
we used [1] chapter 2.3 and 2.4, [2] chapter 5.3 and [3] chapter 4.3. The section is
devided in two subsections, the first subsection is about Möbius transformations
in R2, the second subsection is about Möbius transformatons in Rn. In section
4.2, we will see another type of Möbius transformations, the extended Möbius
transformations, here we used [1] chapter 2.6.

4.1 General Möbius transformations

4.1.1 Möbius in R2

We have already defined Möbius transformation in chapter 3.5 and we have
seen that this transformations are conformal. In this subsection, we will see the
Möbius transformations in more detail.
First, we have the following lemma.

Lemma 4.1. A Möbius transformation M(z) = az+b
cz+d in R2 is the composition

of inversions in spheres.

Before we can prove the lemma, we need two new functions, the extended
linear function and the extended reciprocal function, [2].

Definition 4.1. An extended linear function is a function of the form

t(z) = az + b

where z, a, b ∈ Ĉ and a 6= 0.
The extended linear function can be decomposed into t = t2 ◦ t1 where

• t1(z) = |a| z is a scaling

• t2(z) = a
|a|z + b is an isometry

Definition 4.2. The extended reciprocal function is a funtion t given by

t(z) =
1
z

where z ∈ Ĉ \ {0}.
The extended reciprocal function can be decomposed into t = t2 ◦ t1 where

• t1(z) = 1
z̄ is an inversion

• t2(z) = z̄ is a conjugation

Now we know this, we can prove the lemma, [2].

Proof. We distinguish two cases, the case c = 0 and the case c 6= 0.
First, if c = 0 we can say that M is an extended linear function, and therefore

11



4.1 General Möbius transformations 4 MÖBIUS TRANSFORMATIONS

it is a composition of inversions in spheres.
Now assume c 6= 0. Then we can write for z ∈ Ĉ \ {−dc} that

M(z) =
a(cz + d)− ad+ bc

c(cz + d)

= −
(
ad− bc

c

)
·
(

1
cz + d

)
+
a

c

So we can write M as the composition t3 ◦ t2 ◦ t1 where t2 is the extended
reciprocal function, and thus a composition of inversions. Furthermore, t1 and
t3 are the extended linear functions given by

t1(z) =
{
cz + d if z 6=∞
∞ if z =∞

and

t2(z) =
{
−
(
ad−bc
c

)
z + a

c if z 6=∞
∞ if z =∞

Also the extended linear functions are a composition of inversions, and therefore,
since both t1 and t2 as well as t3 are compositions of inversions, it must hold
that M(z) is a composition of inversions as well, which we wanted to prove.

For a Möbius transformation the following lemma holds.

Lemma 4.2. The composition of two Möbius transformations is again a Möbius
transformation, [1].

To see this, take two Möbius transformations given by

M1(z) =
az + b

cz + d

and
M2(z) =

αz + β

γz + δ

and compute the composition M2 ◦M1. It is easy to see that this again is a
Möbius transformation.
We also can prove this lemma by lemma 4.1. Since M1 and M2 are a finite
composition of inversions, it must hold that M = M2◦M1 is a finite composition
of inversions as well, and therefore a Möbius transformation.
Another way to compute the composition of M1 and M2 is to take the associated
matrix of the Möbius transformation. This associated matrix is defined as
follow.

Definition 4.3. For a Möbius transformation M(z) = az+b
cz+d the matrix A given

by

A =
(
a b
c d

)
is the matrix associated with M(z), see [2].
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4.1 General Möbius transformations 4 MÖBIUS TRANSFORMATIONS

To compute the composition of M1 and M2 with associated matrices A1 and
A2 we can just compute the product A1A2. This matrix product is now the
associated matrix of the composition of M1 and M2.
Since this is not completely trivial, we will show that this result is true. Take
two Möbius transformations M1 = a1z+b1

c1z+d1
and M2 = a2z+b2

c2z+d2
with associated

matrices A1 and A2 respectively, where A1 and A2 are given by

A1 =
(
a1 b1
c1 d1

)
and

A2 =
(
a2 b2
c2 d2

)
Then, with an easy computation we can see that the composition of M1 and
M2 is given by

M2 ◦M1(z) = M2

(
a1z + b1
c1z + d1

)
=

(a2a1 + b2c1)z + (a2b1 + b2d1)
(c2a1 + d2c1)z + (c2b1 + d2d1)

(5)

which has associated matrix

A =
(
a2a1 + b2c1 a2b1 + b2d1

c2a1 + d2c1 c2b1 + d2d1

)
With another computation it follows easily that A2A1 = A, so indeed to com-
pute the compostion of Möbius transformations it is enough to compute the
product of the associated matrices.
Now lemma 4.2 immediately yields the following lemma.

Lemma 4.3. The Möbius transformations form a group

With this lemma, we can also conclude that the inverse of a Möbius trans-
formation can be computed with help of the associated matrix, and we get

M−1(z) =
dz − b
a− cz

In the theory about Möbius transformations, the cross ratios play a role, because
of the following lemma.

Lemma 4.4. The cross ratio of four points is invariant under a Möbius trans-
formation.

To prove this lemma, we take four distinct points zi, i = 1, 2, 3, 4 and we
take M(zi) the images of the zi under a Möbius transformation M(z). The
lemma now follows from direct computation of the cross ratio of the M(zi). For
the complete proof, see [1].
So now we have seen the following properties of Möbius transformations:

• Möbius transformations are conformal maps

• The composition of two (or more) Möbius transformations is again a
Möbius transformation

• Möbius transformations form a group

• The cross ratio is invariant under a Möbius transformation

13
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4.1.2 Möbius in Rn

In this subsection, we will give the definition of a Möbius transformation in Rn,
and we will check that the properties stated in section 4.1.1 also hold for Rn.

Definition 4.4. A Möbius transformation in Rn is a finite composition of in-
versions of Rn in spheres, [3].

So with this definition, we have generalized lemma 4.1 to a definition in Rn.
Now we want to check if all the properties in section 4.1.1 also hold for this
definition of a Möbius transformation.

• Möbius transformations are conformal maps

This property holds for Rn. We know that every Möbius transformation is a
composition of inversions in spheres, and every inversion is conformal, so their
composition is conformal as well, and thus every Möbius transformation in Rn
is conformal.

• The composition of two (or more) Möbius transformations is again a
Möbius transformation

This property is also valid in Rn. Take an arbitrary number of Möbius trans-
formations given by M1 = Im1 ◦ Im2 ◦ ... ◦ Imk

, M2 = In1 ◦ In2 ◦ ... ◦ Inl
,...,

Mq = Ij1 ◦ Ij2 ◦ ... ◦ Ijp , where all the Iki are inversions in spheres. Then the
composition M = Mq ◦ ...◦M1 is also a composition of inversions, and therefore
again a Möbius transformations.

• Möbius transformations form a group under composition

Also this property holds in Rn. That the Möbius transformations form a group
yields from the previous property if we can show that a Möbius transformation
in Rn has an inverse. So the only thing we have to do is find the inverse of
M = I1 ◦ I2 ◦ ... ◦ Im. Then for this Möbius transformation, the inverse is given
by M−1 = Im ◦ Im−1 ◦ ... ◦ I1, because then it holds that M−1 ◦M = Id with
Id the identity.

• The cross ratio is invariant under a Möbius transformation

The cross ratio only holds in R2 or Ĉ, and therefore we don’t have to check this
property in this section.
Therefore, all the necessary properties also hold in Rn.
The associated matrix is very difficult to extend to Rn, and therefore we will
not go into this subject here.

4.2 Extended Möbius transformations

In this subsection we will look at a special group containing the Möbius trans-
formations and the anti-homographies. In section 3.6 we have already seen the
anti-homographies, but in this section we will look to these maps in more detail,
and to the group they form together with the homographies or Möbius trans-
formations.
In the previous section, we have seen the definition of a Möbius transformation,
or a homography. The definition of an anti-homography is the following, like
we have seen in section 3.6.

14
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Definition 4.5. A map W : Ĉ→ Ĉ given by

W (z) =
az̄ + b

cz̄ + d

Where a, b, c, d ∈ C and with ad− bc 6= 0, is called an anti-homography.

From Möbius transformations we know that they leave the cross ratios in-
variant. For anti-homographies, this works a little different. If we have an
anti-homography W (z) = az̄+b

cz̄+d , with (z1, z2, z3, z4) is the cross ratio of the zi,
and (w1, w2, w3, w4) is the cross ratio of the image of the zi under the anti-
homography, then

(w1, w2, w3, w4) = (z1, z2, z3, z4)

Now we know what anti-homographies are, we can look at the extended Möbius
transformations.

Definition 4.6. The group formed by the set of all homographies and anti-
homographies is called the group of extended Möbius transformations.

So the extended Möbius transformations consists of the homographies and
the anti-homographies. Since both Möbius transformations and anti-homographies
map lines and circles to lines and circles, we have two results following from the
theory of Carathéodory, see [10]. First, every 1-1 circle-preserving map of Ĉ
onto Ĉ is an extended Möbius transformation. Furthermore, if we have a plane
region R and a set R′ such that every circle lying in R is a line or circle in R′,
then every 1-1 map from R to R′ is an extended Möbius transformation.
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5 LIOUVILLE’S THEOREM

5 Liouville’s Theorem

In this section, we will study our main theorem, Liouville’s theorem. In section
5.1 we will state the theorem. In section 5.2, the proof of the theorem in R3

will be given. Before we can prove the theorem, we need some lemmas and
definitions. These will also be given in section 5.2. In sections 5.1 and 5.2,
the theorem and the proof are in three dimensions. In section 5.3, we will
generalize this to n dimensions. In the last section, section 5.4, we will give a
counterexample of the theorem of Liouville in R2.

5.1 Liouville

The theorem of Liouville is stated as follow.

Theorem 5.1 (Liouville’s theorem in R3). Let f : U → f(U) be a one-to-
one C3 conformal map, where U ∈ R3 is open. Then f is a composition of
similarities and inversions.

In this theorem we see a new term, namely a similarity. So before we proceed
to the proof of the theorem, we need to know what a similarity is.

Definition 5.1. A function f from a metric space to the same metric space is
a similarity if

d(f(x), f(y)) = rd(x, y)

for a positive scalar r, [13].

So Liouville proved that every conformal map is a composition of Möbius
transformations. This is remarkable, since this is not true in two dimensions as
we will show in section 5.4.

5.2 Proof

In this section, we will give the proof of Liouville’s theorem in R3. For the
proofs of the required lemmas, we used [5] chapter 4 and chapter 2. All lemmas
and proofs can be found in here, except the proof of the lemma of Dupin. This
can be founded in [1] chapter 6.2.

5.2.1 Lemma of Dupin

In this subsection, we will discuss the first lemma we need, the lemma of Dupin.

Lemma 5.1 (Lemma of Dupin). The surfaces of a triply orhtogonal system
intersect each other in the lines of curvature.

In this lemma, we see two new terms, namely a triply orthogonal system and
lines of curvature.

Definition 5.2. A triply orthogonal system consists of three families of surfaces
in an open set in R3 with one surface from each family passing through each point
and such that the tangent planes at each point are mutually perpendicular.
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5.2 Proof 5 LIOUVILLE’S THEOREM

So if we look at a point p in a triply orthogonal system with families of
surfaces K1, K2 and K3, there is a surface from each of the Ki passing through
p. The surface that is coming from the family Ki is called ki. Furthermore,
these surfaces ki are perpendicular to each other, so ki is perpendicular to kj ,
for i = 1, 2, 3, j = 1, 2, 3 and i 6= j.
To make the concept of a triply orthogonal system more clear, we will give an
example. A triply orthogonal system is a system where the first family consists
of all planes parallel to the (x, y)-plane, the second family consists of all the
circular cylinders having the z-axis as their common axis, and the third family
consists of all planes that pass through the z-axis. We then get the following
picture for our example.

Figure 2: An example of a triply orthogonal system, [5]

The other unknown term is the line of curvature. To define a line of curva-
ture, take a surface K ⊂ R3 with curve x on this surface.

Definition 5.3. A curve x is a line of curvature of a surface K if its derivative
always points along a principal direction.

Furthermore, a curve x is a line of curvature if and only if its geodesic torsion
τg is zero along the curve, where τg is defined as

τg = 〈dn
ds
,v〉 = −〈AT,v〉

for v = n×T, n the surface normal and A the Weingarten map, defined as

Av = −dn
ds

for A : TpK → TpK. This map is also called the shape operator, [6] chapter
2 and chapter 5. Now we know what Dupin’s lemma says, we can prove this
lemma. For the proof we used [1] chapter 6.2.

Proof. First, we take three surfacesK1, K2 andK3, where each surface is coming
from a family. Since in a triply orthogonal system each family intersect with
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5.2 Proof 5 LIOUVILLE’S THEOREM

the others, we have curves xi on the intersections of the surfaces, so we have
that

• x1 is the curve parametrized by arc length on K2 ∩K3

• x2 is the curve parametrized by arc length on K3 ∩K1

• x3 is the curve parametrized by arc length on K1 ∩K2

To show that the xi are lines of curvature, we want to show that the geodesic
torsion of each xi is zero. Therefore, define vab = nb×Ta for a, b = 1, 2, 3. Here
a is the index that refers to the number of the curve, so wich xi is used, and
b is the index that refers to the surface that is used, so b refers to which Ki

is used. Since Ta and na are parallel, we can say that vab = nb × na = ±nc,
where c 6= a, b.
Now let’s consider x1 = K2 ∩K3. First take x1 as a curve on K2, then we have

v12 = n2 ×T1 = −n3

And for x1 as a curve on K3 we have

v13 = n3 ×T1 = n2

Now we can compute the geodesic torsion on K2.

〈dn2

ds
,v12〉 = 〈dn2

ds
,−n3〉

(∗)
= 〈n2,

dn3

ds
〉

= 〈v13,
dn3

ds
〉 (6)

Where in (*) in the second step of (6) we used the fact that 0 = d
ds 〈n2,n3〉, the

rest follows from an easy computation. So in (6) we can see that the geodesic
torsion on K2 is equal to the geodesic torsion on K3. We call this torsion τ1

g .
Furthermore, if we use the Weingarten map, we can say that for τ1

g

τ1
g = 〈n2,

dn3

ds
〉 = −〈A3T1,n2〉

Similarly we can say that

τ2
g = 〈dn3

ds
,v23〉

= −〈dn3

ds
,n1〉

= 〈A3T2,n1〉 (7)

So in the point of intersection p we know that

τ1
g + τ2

g = −〈A3T1,n2〉+ 〈A3T2,n1〉

Furthermore, Ta = na, and with the symmetry of the Weingarten map A3 we
can say that

τ1
g + τ2

g = −〈A3n1,n2〉+ 〈A3n2,n1〉 = −〈A3n1,n2〉+ 〈A3n1,n2〉 = 0
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In the same way,

τ2
g + τ3

g = 0

τ3
g + τ1

g = 0

So τ1
g = τ2

g = τ3
g = 0.

So x1, x2 and x3 are lines of curvature, and since the xi were also lines of inter-
section, we have now proved that the lines of intersections in a triply orthogonal
system are lines of curvature.

5.2.2 Lemma of Möbius

The second lemma we need to prove Liouville’s theorem, is the lemma of Möbius.
This lemma will be discussed in this section.

Lemma 5.2 (Lemma of Möbius). Take U and V open sets with U ,V ⊂ R3 and
U a connected set. If f : U → V is a map which takes parts of spheres and
planes to parts of spheres and planes, then f is a composition of similarities
and inversions, in fact at most one of each.

Before we give the proof of this lemma, we give some general information
that we will need in the proof.
Suppose we have a sphere S′ with center p and a sphere S with the point p ∈ S,
but p not necessarily the center of S. We take I ′ the inversion in the sphere S′.
From the lemma, we now that I ′(S \ {p}) is a sphere or a plane. Then we
can conclude that I ′(s \ {p}) is a plane and not a sphere. To see this, define
I ′(S \ {p}) = H and suppose H is a sphere. Then H is compact. If H is
compact, then∞ ∈ H. And∞ is the inversion point of p, so the inversion point
of p is in H. But we don’t take the inversion of p since p is the center of the
circle of inversion. So ∞ can’t be in H, so H can’t be compact, so H is not a
sphere. Therefore, H = I ′(S \ {p}) is a plane.
In the same way we can see that for a plane P with a point p such that p /∈ P
that I ′(p) = S \ {p}.
Now we can prove the theorem, where we use the spheres and points above.

Proof. Take p∗ a point in U with p∗ 6= p. Take a sphere Σ1 around p∗ such that
every point in the ball B (this is Σ1 with its interior) is in U , but p /∈ B. We
can do this by taking Σ1 small enough.
We do the same thing for V , but with f(p), f(p∗), Σ2 and B′.
Now we take two inversions I1 and I2 with

I1 : R3 \ {p∗} → R3 \ {p∗}
I2 : R3 \ {f(p∗)} → R3 \ {f(p∗)}

inversions in Σ1 and Σ2 respectively. We can’t take the inversions Ii : R3 → R3

since p∗ and f(p∗) are the centers of inversion, so we don’t take the inversion
points of them, and p∗ and f(p∗) are also no inversion points.
Now define a map F : R3 \ B → R3 given by F = I2 ◦ f ◦ I1. This map F has
three important properties:

1. F is defined everywhere on R3 \B
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2. p is in the domain of F

3. F takes parts of planes and spheres to parts of planes and spheres, as both
I1 and I2, as well as f , satisfy this property.

Now take a sphere S in Σ1 met p∗ ∈ S. Then f(S) is a sphere in V with
f(p∗) ∈ f(S). Therefore, I2(f(S) \ {f(p∗)}) is a plane. This is true since we
proved this in the first statement above the proof. Since I2(f(S) \ {f(p∗)}) is a
plane, we can say that F brings planes in R3 \ B to planes in R3. We can also
see this by looking at the maps that form F . Remember that F = I2 ◦ f ◦ I1.
Then the map I1 brings a plane in R3 \B to a sphere in U . The map f brings
this sphere to a sphere through f(p∗). This sphere is inverted to R3 by the map
I2.
Furthermore, F brings straight lines in R3 to straight lines in R3 since these
straight lines are the intersection of two planes.
What we also can say about F is that F preserves parallelism of straight lines.
To see this, consider two situations, the situation where two lines l1 and l2 are
in P ⊂ R3 \B and the situation where l1 and l2 are at different sides from B.
First suppose that l1 and l2 are parallel in P ⊂ R3 \B. Then F (l1) and F (l2)
are different straight lines in F (P ) with intersection F (l1)∩F (l2) = ∅, so F (l1)
and F (l2) are also parallel.
Suppose l1 and l2 are parallel lines lying on opposite sides of B. Then choose
the line l3 such that l1 and l3 are in the plane P1 ⊂ R3 \B and l2 and l3 are in
the plane P2 ⊂ R3 \B. Then F (l1) is parallel to F (l3) and F (l2) is parallel to
F (L3), because of the reason above, so F (l1) is parallel to F (l2). So F preserves
parallelism of straight lines.
Now we define the translation Tq : x 7→ x+ q and we look at a map G in a convex
neighbourhood U of 0, where G = T−F (p) ◦ F ◦ Tp. We have four properties of
G.

1. G maps 0 to 0:

G(0) = (T−F (p) ◦ F ◦ Tp)(0)
= (T−F (p) ◦ F )(Tp(0))
= T−F (p)(F (p))
= F (p)− F (p)
= 0

2. G maps straight lines to straigt lines, since both Tq and F have this
property

3. G preserves parallelism, since both Tq and F have this property

4. G is a linear map.

To see the fourth point, we have to prove that G(x + y) = G(x) + G(y) and
G(αx) = αG(x).
We first prove that G(x + y) + G(x) + G(y). For x, y, x + y ∈ U with x and
y linearly independent, we know that G(x + y) = G(x) + G(y) because of the
parallellogram construction of two vectors. By continuity, the same property
holds for x and y linearly dependent. So indeed G(x+ y) = G(x) +G(y).
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The second thing to prove for linearity of G is that G(αx) = αG(x). To see
this, we compute the left side and the right side of the equation and we show
that these are the same.

G(αx) = (T−F (p) ◦ F ◦ Tp)(αx)
= (T−F (p) ◦ F )(αx+ p)
= T−F (p)(F (αx+ p))
= F (αx+ p)− F (p)
= F (αx)
= αF (x)

And for the right side, so αG(x) we have

αG(x) = α(T−F (p) ◦ F ◦ Tp)(x)
= α(T−F (p) ◦ F )(p+ x)
= α(T−F (p))(F (x+ p))
= α(F (x+ p)− F (p))
= αF (x)

And therefore G(αx) = αG(x), so G is linear.
So we know that G is linear, so G is a composition of an orthogonal map
and a self-adjoint map. For the proof of this, see Spivak vol.I. But we also
know that G takes small spheres around 0 to spheres. Therefore, the self-
adjoint factor must be a multiple of the identity. So G is a similarity, with
G = T−F (p) ◦F ◦Tp = T−F (p) ◦I2 ◦f ◦I1 ◦Tp. So f is a composition of inversions
and similarities, and that is what we had to prove. Now we only have to prove
the uniqueness. To prove this uniqueness, extend f to the so called conformal
space, which is R3∪{∞}. Then repeat the proof for p∗ =∞. Then the inversion
I1 around p∗ is just a similarity and one inversion. Moreover, if f(∞) =∞, then
I2 is also a similarity, and the composition reduces to just a similarty. With
this, the uniqueness is proved, and thus the lemma is proved.

5.2.3 Umbilic points

The last lemma we need for the proof of Liouville’s theorem in R3 is a lemma
about umbilic points. Before we state the lemma, we need the following defini-
tion.

Definition 5.4. An umbilic point is a point where all the directions are principal
directions.

Knowing this, we can state and prove the following lemma.

Lemma 5.3. If K ⊂ R3 is a connected surface such that each point is an
umbilic point, then K is part of a plane or a sphere.

Proof. To make the proof, we will first show that if every point is an umbilic
point, then κ = κ1 = κ2 = c with c a constant. After this we will look at two
situations, κ = 0 and κ 6= 0, and we will show that this leads to a part of a
plane or part of a sphere.
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We know every point of K is an umbilic point, so for the principal curvatures
κ1 and κ2 it holds that κ = κ1 = κ2. We also know that κ = 〈dTds ,n〉 = 〈Aw,w〉
with A the Weingarten map, n the surface normal and w the unit tangent at a
point p. If w = xj

|xj | , then Aw = − 1
|xj |

∂n
∂uj

. So

κ = 〈Aw,w〉

= − 1
|xj |
〈 ∂n
∂uj

,
xj
|xj |
〉

= − 1
x2
j

〈 ∂n
∂uj

, xj〉

And from this it follows that

−κxj =
∂n
∂uj

(8)

Differentiating yields

∂2n
∂uj∂ui

=
∂

∂ui

(
∂n
∂uj

)
= − ∂κ

∂uj
xi −

∂2x

∂uj∂ui

By interchanging the order of differentiating we get

∂κ

∂u1
x2 =

∂κ

∂u2
x1

But x1 and x2 are linearly independent, so ∂κ
∂u1

x2 − ∂κ
∂u2

x1 = 0 implies that
∂κ
∂ui

= 0, so κ is constant, which is the first part of our proof.
Now first assume that κ = 0. Then ∂n

∂ui
= −κxi = 0, so the field of unit normals

is constant on the surface. So the surface is a plane perpendicular to n, so κ = 0
leads to K is a part of a plane.
Now suppose κ 6= 0. Then consider x+ 1

κn. If we differentiate this, we get

∂

∂ui
(x+

1
κ

n) = xi −
1
κ
κxi = 0

Where the second term is true because of (8) and xi = ∂x
∂ui

. So x + 1
κn is a

constant. Call this constant c. Then 〈x− c, x− c〉 = 1
κ2 , which is the equation

of a sphere with center c and radius 1
|κ| , so κ 6= 0 leads to K is part of a sphere.

So we have proved that K part of a sphere or part of a plane is when all points
of K are umbilics.

5.2.4 Proof of Liouville

Now we have all the lemmas we need to prove Liouville’s Theorem. Before we
will give the proof, we will repeat the theorem to make the proof more clear.

Theorem 5.2 (Liouville’s theorem in R3). Let f : U → f(U) be a one-to-
one C3 conformal map, where U ∈ R3 is open. Then f is a composition of
similarities and inversions.
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Proof. Take S ⊂ U a connected surface with S part of a plane or a sphere. We
can find a triply orthogonal system with S in one of the families such that the
lines of intersection with S are curves with any desired tangent vector in a given
point. Since f is conformal, we know that f preserves angles, so the image of
the triply orthogonal family under f is again orthogonal. This image forms a
new triply orthogonal family, call the families of surfaces Mi.
Now we use the lemma of Dupin. The lines of intersection of this new family
Mi with f(S) are lines of curvature on f(S). So we can find lines of curvature
that points in every direction in a given point of f(S). So all points of f(S) are
umbilics.
Now we know this, we can use lemma 5.3, so we know that f(S) is part of a
plane or a sphere.
The last thing we have to do is use the lemma of Möbius. Since f(S) is part of
a plane or a sphere, we can conclude that f is a composition of similarities and
inversions, and thus is f a composition of Möbius transformations.

5.3 Liouville in Rn

In section 5.2, we only proved the theorem of Liouville for R3. In this section,
we are going to generalize the theorem and the proof to Rn. We will first give
the generalized theorem, after that we will give the proof of the new theorem.
The theorem and the proof are coming from [4] chapter 8.5.

Theorem 5.3 (Liouville’s theorem in Rn). Let f : U → f(U) be a one-to-one
Cn conformal map, where U ∈ Rn for n ≥ 3 is open. Then f is a composition
of isometries, dilations and inversions.

This generalized theorem states that every conformal map f in Rn for n ≥ 3
is a composition of Möbius transformations. The proof of theorem 5 is different
than the proof of the theorem in R3, because in Rn we can’t make use of a triply
orthogonal system, and this system is an essential part of the proof in R3. So
we have to make another proof for theorem 5.3. This proof is very long, so to
keep the overview we first will give a pointwise summary which shows the most
important steps of the proof, without technical details. After this summary, we
will give the proof in detail.

1. Find an expression for the coefficient of conformality λ in terms of the
orthonomal frame field e1, ..., en

2. After a lot of computations, show that ∂2ρ
∂xi∂xj

= σδij for some σ, with
ρ = 1

λ and conclude that σ is constant

3. Distinguish two cases, the case σ 6= 0 and the case σ = 0

4. If σ 6= 0, show that ρ is a kwadratic function where we can write ρ =
a1 |p− p0|2 + k1 with k1 a constant, a1 = σ

2 6= 0

5. Assume k1 = 0 and finish the proof by making a map h = g ◦ f−1 where
g = p−p0

|p−p0|2
+ p0 an inversion

6. Show k1 = 0

7. If σ = 0, show this implies that λ is constant, and finish the proof.
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Now we are ready to prove Liouville’s theorem. In the proof we will refer to the
steps above, so that it is clear what we are doing and where we want to go.

Proof. We begin the proof by taking the canonical basis for Rn, so a1 =
(1, 0, 0, ..., 0), ..., an = (0, ..., 0, 1). Then take (x1, ..., xn) the cartesian coor-
dinates of Rn relative to this basis.
Now let e1, ..., en be parallel differentiable vector fields on U such that 〈ei, ej〉 =
δij at each point of U . Now take λ the conformality coefficient of f , i.e the
λ : U → R such that

〈dfp(v1), dfp(v2)〉 = λ2〈v1, v2〉 (9)

for all pairs of vectors v1 and v2 at a point p ∈ U .
If λ is the conformality factor of f , then we can write

〈df(ei), df(ek)〉 = λ2δik (10)

The next step is to take the second differential d2f of f . So d2f : Rn×Rn → Rn

is a symmetric bilinear map with values in Rn and d2f(ai, aj) = ∂2f
∂xi∂xj

in the
canonical basis. Take the indices i, j and k distinct. If we differentiate equation
(10), thus take the d-operator of it, we get the following three equations.

〈d2f(ei, ej), df(ek)〉+ 〈df(ei), d2f(ek, ej)〉 = 0

〈d2f(ej , ek), df(ei)〉+ 〈df(ej), d2f(ei, ek)〉 = 0

〈d2f(ek, ei), df(ej)〉+ 〈df(ek), d2f(ej , ei)〉 = 0

We can see that the equations above are true by applying the d-operator to
(10). Then we get

d〈df(ei), df(ek)〉(ej) = d(λ2δik)(ej) = d(scalar) = 0

With the product rule for the left hand side of the equation, we get the three
equations we wanted to check. If we now sum the first two equations above and
subtract the third, we get

〈d2f(ek, ej), df(ei)〉 = 0

if i, j, k are distinct.
Now we fix k and j and let i vary in the (n−2) remaining indices. Then we can
conclude that d2f(ek, ej) belongs to the plane generated by df(ej) and df(ek).
So we can make an equation of d2f(ek, ej), given by

d2f(ek, ej) = µdf(ek) + νdf(ej) (11)

Now we want to find µ and ν. From equation (10) we know that 〈df(ek), df(ek)〉 =
〈df(ej), df(ej)〉 = λ2. Combining (10) and (11) to compute µ and ν,we get

〈d2f(ek, ej), df(ek)〉 = 〈µdf(ek) + νdf(ej), df(ek)〉
= µ〈df(ek), df(ek)〉+ ν〈df(ej), df(ek)〉
= µλ2 (12)
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And thus

µ =
〈d2f(ek, ej), df(ek)〉

λ2

=
λdλ(ej)
λ2

=
dλ(ej)
λ

(13)

The second step here is not obvious, so we will explain this step here.
From (9) we know that

λ2〈ej , ek〉 = 〈df(ej), df(ek)〉

So if we take the d-operator of both sides we get

d(λ2〈ej , ek〉)(ei) = d(〈df(ej), df(ek)〉)(ei)

And thus

2λdλ(ei)〈ej , ek〉 = d〈df(ej), df(ek)〉(ei)
= 〈〈d2f(ej , ei), df(ek)〉+ 〈df(ej), d2f(ek, ei)〉

Now take j = k. Then we get

λdλ(ei) = 〈d2f(ek, ei), df(ek)〉 (14)

Now we can replace this equation in (13) and then the second step is clear. In
the same way we get

ν =
dλ(ek)
λ

(15)

If we now fill in (13) and (15) in (11), we get the following equation

d2f(ek, ej) =
1
λ

(df(ek)dλ(ej) + df(ej)dλ(ek)) (16)

In the rest of the proof, we will take ρ = 1
λ . Now we want to calculate the

second differential d2(ρf). To do this, we use that d(ρf) = dρf + ρdf . So if we
replace f by ρf in the left side of equation (16), we get

d2(ρf)(ek, ej) = d [d(ρf)(ek)] (ej)
= d [dρ(ek)f + ρdf(ek)] (ej)

= d2ρ(ek, ej)f + ρd2f(ek, ej) + dρ(ek)df(ej) + dρ(ej)df(ek)
(∗)
= d2ρ(ek, ej)f +

1
λ
d2f(ek, ej)−

1
λ2

(
dλ(ek)df(ej) + dλ(ej)df(ek)

)
(∗∗)
= d2ρ(ek, ej)f (17)

where we used the following in (*) and (**)

• In (*) we used that if ρ = 1
λ , then dρ = d( 1

λ ) = − 1
λ2 dλ.

25



5.3 Liouville in Rn 5 LIOUVILLE’S THEOREM

• In (**) we used equation (16)

The proof of the following lemma is step 5 in our list.

Lemma 5.4. If k 6= j, then d2ρ(ek, ej) = 0.

Proof. To prove the lemma, we are going to calculate the third differential,
d3(ρf), with the third differential a mapping d3(ρf) : Rn×Rn×Rn → Rn such
that in the canonical basis it holds that d3(ρf)(ai, aj , ak) = ∂3(ρf)

∂xi∂xj∂xk
, where

the ai formed the canonical basis. Now we use equation (17) to obtain

d3(ρf)(ek, ej , ei) = d
[
d2(ρf)(ek, ej)

]
(ei)

= d
[
d2ρ(ek, ej)f

]
(ei)

= d3ρ(ek, ej , ei)f + d2ρ(ek, ej)df(ei) (18)

In equation (18), the left hand side and the first part of the right hand side are
symmetric in i, j, k. Therefore, the same thing must happen in the second part
of the right side. Therefore we can conclude that

d2ρ(ek, ej)df(ei) = d2ρ(ek, ei)df(ej) (19)

Furthermore, we know that df(ei) and df(ej) are linearly independent, and i,j,k
are distinct but arbitrary indices. So from (19) we can see that

d2ρ(ek, ej)df(ei)− d2ρ(ek, ei)df(ej) = 0

And since df(ei) and df(ej) are linearly independent, it must hold that d2ρ(ek, ej) =
d2ρ(ek, ei) = 0, so d2ρ(ek, ej) = 0 for all j 6= k, and that is what was needed to
be proven.

Now we fix a point p ∈ U . Then we can choose the vector fields e1, e2, ..., en
in such a way that they form an orthonormal basis in p. Since these ei form an
orthonormal basis, the claim in lemma 5.4 is valid at p for every orthonormal
basis. Because p ∈ U is arbitrary, the equation d2ρ(ek, ej) = 0 is valid at every
point of U for every orthonormal basis. Furthermore we know that d2ρ is a
symmetric bilinear form, and we know that

0 = d2ρ(
ej + ek√

2
,
ej − ek√

2
) =

1
2
[
d2ρ(ej , ej)− d2ρ(ek, ek)

]
(20)

The first step in this equation is true since we proved in lemma (5.4) that
d2ρ(ek, ej) = 0 for an orthonormal basis. So in particular this must hold for the
orthonormal basis { ej+ek√

2
,
ej−ek√

2
} of Rn. The second step in (20) is true since

d2ρ is a symmetric bilinear form.
And thus from (20) we can conclude that d2ρ(ej , ej) = d2ρ(ek, ek) for all j 6= k.
This yields that for any orthonomal basis ap p we have that d2ρ(ek, ej) = σδjk
for some σ. So if we take the canonical basis as orthonormal basis, we have that

∂2ρ

∂xi∂xj
= σδij (21)
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Now we want to take the derivative of both sides of (21). Therefore, we first
take i = j, and we obtain

∂2ρ

∂xj∂xj
= σ

Now we can differentiate with respect to xi to get for i 6= j

∂σ

∂xi
=

∂3ρ

∂xi∂xj∂xj

=
∂3ρ

∂xj∂xi∂xj

=
∂

∂xj

(
∂2ρ

∂xi∂xj

)
=

∂

∂xj
(0)

= 0

Since from (21) it follows that ∂2ρ
∂xi∂xj

= 0 if i 6= j we can conclude that ∂σ
∂xi

= 0,
so σ is constant.
To prove the theorem, we now consider two cases, σ = 0 and σ 6= 0, and we are
going to show that f is a composition of isometries, dilatations or inversions.
First consider the case that σ is a nonzero constant. It is easy to see that (21)
implies

ρ =
σ

2

∑
x2
i + σ

∑
bixi + ci (22)

If we write (22) in another form we get the following formula for ρ.

1
λ

= ρ = a1 |p− p0|2 + k1 (23)

With a1 = σ
2 , k1 a constant and p0 ∈ Rn. This formula can be seen by com-

pleting the squares. Therefore, first rewrite (22) as

ρ =
σ

2

∑
(xi + bi)2 + (c− 1

2
σ
∑

b2i )

Now take the point p ∈ U with coordinates (x1, x2, ..., xn), take p0 = (−b1, ...,−bn)
and k1 = c− 1

2σ
∑
b2i . Then we have showed that equation (23) is true.

Now the proof is complete for the case σ 6= 0 if in (23) k1 = 0, because then we
can take the map h = g ◦ f−1 for the inversion in the unit sphere g(p), and we
can see that this gives us that f is the composition of an isometry, a dilation
and an inversion. We first will give the last step of the proof before we will show
that k1 = 0, so we now assume that k1 = 0.
Without loss of generality, take the inversion in the unit sphere centered at p0,
this is the map g : U → Rn given by

g(p) =
p− po
|p− p0|2

+ p0

Now we take the composition h = g ◦ f−1. Then h is a conformal map, because
both f−1 and g are conformal, since an inversion is a conformal map, and f is
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conformal, so f−1 is conformal. Furhtermore, the composition of two conformal
maps is again conformal, and therefore h is conformal. To find the coefficient
of conformality of the map h, we use that λ−1 is the coefficient of conformality
of f−1 if λ is the coefficient of conformality of f . So if we take the coefficients
of conformality of both g and f−1, we find that the coefficient of conformality
of h is given by

a1 |p− p0|2
1

|p− p0|2
= a1

with a1 defined as in equation (23), so a1 = σ
2 . Now we can state the following

lemma.

Lemma 5.5. The map h is an isometry followed by a dilation.

To see this lemma, we use that h is a conformal map, and that every con-
formal map is an isometry followed by a dilation. This last statement follows
from equation (9). So h is an isometry followed by a dilation, and therefore we
can say that f = h−1 ◦ g is an inversion followed by a dilation followed by an
isometry, which we wanted to prove.
But in above argument, we assumed k1 = 0. So this remains to prove.
We start with applying equation (23) to f−1. Then we get that

λ = a2 |f(p)− q0|2 + k2 (24)

With a2 and k2 constant.
To see this formula, we use that f−1( 1

λ ) = λ and the inverse of (23) is indeed
the formula above. So now we get

(a1 |p− p0|2 + k1)(a2 |f(p)− q0|2 + k2) = 1 (25)

Because 1
λ ·λ = 1. Equation (25) shows us that a sphere with center p0 is mapped

by f into a sphere with center q0. Furthermore we know that f preserves angles,
so the radial segments of the first sphere are mapped into radii of the second
sphere. Now take p(s) a radial segment of the first sphere contained in U with
0 ≤ s ≤ s0 and s the arc length. Let f ◦ p(s) be the image of p(s). Then the
length of the image segment is given by∫ s0

0

∣∣∣∣df (dpds
)∣∣∣∣ ds

To compute this integral, we use equation (10) and equation (24) and the fol-
lowing equation ∣∣∣∣df (dpds

)∣∣∣∣ =

√〈
df

(
dp

ds

)
, df

(
dp

ds

)〉
=
√
λ2

= |λ|

=
∣∣∣∣1ρ
∣∣∣∣

If we now use (23), we get that∣∣∣∣df (dpds
)∣∣∣∣ =

1
a1 |p(s)− p0|2 + k1

(26)
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If we fill this in in the integral, we get for the length of the segment∫ s0

0

∣∣∣∣df (dpds
)∣∣∣∣ ds =

∫ s0

0

ds

a1 |p(s)− p0|2 + k1

= |f(p(s0))− f(p(0))| (27)

The first part in this integral is the length of the image segment as we already
mentioned. The second part is also clear, since we have shown this in equation
(26). The last step needs some explanation. The image segment is a straight
line, and therefore its length is given by the difference between the end point
and the starting point. This difference is given in the right hand side of equation
(27).
We will prove that k1 = 0 by contradiction. So suppose k1 6= 0. Then
|f(p(s0))− f(p(0))| is a transcedental function. This can be seen by computing∫ s0

0

ds

a1 |p(s)− p0|2 + k1

which will give us a solution with the arccot, so indeed |f(p(s0))− f(p(0))| is
not an algebraic function of |p(s0)− p0|. But if we look at equation (25), we can
see that this function is indeed an algebraic function of |p(s0)− p0| since we can
solve (25) for |p(s0)− p0| in an algebraic way. Therefore, there is a contradiction
in the being algebraic of |f(p(s0))− f(p(0))| as a function of |p(s0)− p0|. So it
must hold that k1 = 0, which we wanted to prove, and with this the proof for
σ 6= 0 is finished.
Now the case σ = 0 is left. In this situation we can rewrite equation (22) to

ρ =
1
λ

=
∑

aixi + c1, (28)

with c1 a constant. To make this part of the proof easier, we write A1(x) =∑
aixi with x = (x1, x2, ..., xn). So then we get

ρ =
1
λ

= A1(x) + c1 (29)

This part of the proof works in the same way as the previous part where σ 6= 0.
So if we take f−1 again, and apply this to (29), we get that

(A1(x) + c1)(A2(f(x)) + c2) = 1, (30)

with A2(f(x)) =
∑
aif(xi) and c2 a constant. We can use the same argument

as before. In equation (30) we can see that a hyperplane parallel to A1 = 0
is taken by f into a hyperplane parallel to A2 = 0. Because f is conformal,
it preserves angles, and thus a line perpendicular to the hyperplane A1 = 0 is
taken by f into a line perpendicular to the hyperplane A2 = 0. Now consider
a segment p(s) of such a line, with 0 ≤ s ≤ s0 and p(s) parametrized by arc
length s. Then we can obtain the following equation, in the same way as the
case σ 6= 0.

|f(p(s0))− f(p(0))| =
∫ s0

0

ds

A1(p(s))c1
Again we use the contradiction. Suppose A1(p(s)) 6= 0. Then equation (30) is
an algebraic function, but |f(p(s0))− f(p(0))| is not. Therefore we must have
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that A1(p(s)) = 0.
If A1(p(s)) = 0, this means that (28) reduces to

ρ =
1
λ

= c1

So λ is a constant. This means that the lengths of the tangent vectors are
multiplied by a constant λ and thus f is an isometry followed by a dilatation.
So the proof is also finished for σ = 0.
So f is a composition of at most one inversion, dilatation and isometry, and
that is what we wanted to prove.

5.4 Counterexample

In this short section, we will give an example of a conformal map which is not
a Möbius transformation, i.e. an example for which Liouville’s theorem doesn’t
hold. We will give this example to show that the criterium of being in Rn with
n ≥ 3 is necessary in the theorem.
In R2, look at the group of analytic funtions, also called holomorphic functions,
and the anti-holomorphic functions. As we have seen in section 3.7, these func-
tions are conformal. The analytic functions however don’t need to be Möbius
transformations. Actually, most of the analytic functions are no Möbius trans-
formation. For example, take f(z) = sin z. This function is analytic, because
the derivative of f(z) exists everywhere. But f(z) can’t be written in the form

f(z) =
az + b

cz + d

with a, b, c, d constants in C. Therefore, in R2 the analytic functions and anti-
holomorphic functions are not all a composition of Möbius transformations, and
therefore the theorem of Liouville does not hold in R2.
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6 Discussion

In this thesis we have seen several subjects. We started with the inversion ge-
ometry. The inversion geometry we talked about, is only the necessary theory
for the theorem of Liouville. There is much more to talk about. In the chapter
about inversion geometry we have seen the general theory followed by construc-
tion methods, properties and a little part of the cross ratios.
After the inversion geometry we have seen the conformal maps. Also for the
conformal maps it holds that we have only discussed a little part of the theory.
In the chapter about conformal maps we have seen the general theory followed
by six examples which are useful for the rest of the thesis. Some of the theorems
in this example are proved, some are not. These proves are left for the reader.
The next small chapter was about Möbius transformations. Also in this chapter
we have only discussed the information we needed for the theorem of Liouville.
In the chapter about Möbius transformations we first have seen the general
Möbius transformations. We have seen how can be detected if a funtion is a
Möbius transformation and we have discussed some properties about this type
of transformations. After the general Möbius transformations we have seen the
extended Möbius transformations.
The most important chapter in this thesis is the chapter about the theorem of
Liouville, because this was the goal of the thesis: to prove Liouville’s theorem.
First we stated the theorem. Then we distinguished two cases. First we looked
at the case of the theorem in R3. Before we could prove this, we had to look at
the lemma of Dupin, the lemma of Möbius and a lemma about umbilics. After
we proved these lemmas, we were able to prove the theorem of Liouville in R3.
The second case was Liouville’s theorem in Rn. We didn’t need lemmas to be
able to prove the theorem. The proof is very technical tough. But we were able
to prove the theorem. We have also given a counterexample of the theorem of
Liouville in R2. In this way, we have proved that the criterium to be in Rn for
n ≥ 3 is necessary.
We have just given an overview of the necessary theory. Further research can be
done in mainly the conformal mapping theory. There is much more literature
about this subject, for example applications of the conformal maps.
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A CONSTRUCTION OF IMAGES OF POINTS UNDER INVERSION

A Construction of images of points under inver-
sion

In this appendix we will give three ways to construct I(p) when p lies inside the
circle of inversion C and two ways to construct I(p) when p is outside C. This
will be done in the subsections A.1 and A.2
There are pictures in the sections to visualize the constructions. The pictures
are in R2 to make things more clear. Therefore, the theory in this section
will also be in R2, but things work the same in Rn with spheres and planes.
Furthermore, in this section we will call the inversion point p′ in stead of I(p),
because p′ is an easier notation here.
The theory is coming from Blair chapter 1, [1], Brannan chapter 5.1, [2] Ratcliffe
chapter 4.1, [3].

A.1 p inside C
When p lies in the inside C, we have three ways to construct the inversion point.
We will discuss each of these ways shortly.

1. We begin the construction of I(p) by drawing the line ap, since p and
I(p) should be on the same line. The next step is to construct a line
perpendicular to the line ap through p. These lines intersects C in the
points U and V . To find I(p), draw the tangent lines in U and V to C.
These tangent lines intersect the line ap in the point I(p).

Figure 3: Construction method 1 for p in C

To check if this construction gives us the right point I(p) we have to check
that ap · ap′ = r2. In figure 3 we can see that 4aUp ∼ 4ap′U , so

ap

aT
=
aU

ap′

And thus ap · ap′ = aU
2

= r2, so this way of construction gives us the
correct inversion point p′.
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2. For the second way to construct I(p) we begin by drawing the line ap
again. Then we draw a line perpendicular on ap through a This line
intersects C in the points U and V . The next step is to draw the line Up,
which intersects C in Q. To find I(p), draw the line V Q, which intersects
ap in I(p).

Figure 4: Construction method 2 for p in C

In figure 4 we can see that 4Uap ∼ 4UQV ∼ 4p′aV . We will use the
relation 4Uap ∼ 4p′aV such that we can conclude that

ap

aU
=
aV

ap′

And thus ap · ap′ = aU · aV = r2, which confirms that I(p) is the correct
inversion point.

3. The last way to construct I(p) again begins by drawing the line ap. Next,
draw a line through a perpendicular to ap with length the diameter of C.
This line intersects C in U . Now we construct a new circle D by drawing
a circle with diameter aU and with the middle of aU as center. Next we
draw the line Up, which intersects D in the point Q. Then construct the
parallel of aU through Q. This line also intersects D in the point Q′. The
last step is to draw the line UQ′, which intersects ap in the point I(p).
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Figure 5: Construction method 3 for p in C

In figure 5 we can see that 4aUp ∼ 4ap′U , so

ap

aU
=
aU

ap′

And thus ap · ap′ = aU
2

= r2 so the third way of construction also gives us the
correct inversion point p′.

A.2 p outside C
There are two ways to construct the inversion point I(p) when p lies outside the
circle C. These ways will also be discussed briefly.

1. To begin the construction of I(p), draw the line ap. Then construct the
tangent line from p to C. This line is tangent to C in the point U . The
last step to find I(p) is to draw the line through U perpendicular to ap,
which intersects ap in I(p). This is the opposite way of section A.1 item
1.
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Figure 6: Construction method 1 for p outside C

Again we want to check if the construction gives us the correct point p′.
Since this way of construction is the opposite of A.1 item 1, we can use
the same argument to show that p′ is correct.
We can see in figure 6 that 4ap′U ∼ 4aUp and thus

ap

aU
=
aU

ap′

And so it follows that ap · ap′ = aU
2

= r2, and indeed p′ is constructed in
the correct way.

2. The second way to construct I(p) starts again with drawing ap. Take the
middle of the line segment between a and p and call this point Q. Now we
are going to construct another circle D with center Q and radius |p−Q|.
The intersection points of C and D are called U and V . The last step to
find I(p) is to draw the line UV , which intersects ap in I(p).

Figure 7: Construction method 2 for p outside C
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For this way of construction, we need an extra step to get to the congruent
triangles. If we use the theorem of Thales, we can conclude that ∠aUp = 90◦.
With this knowledge we can get to the congruent triangles. In figure 7 we can
see that 4ap′U ∼ 4aUp, and thus

ap

aU
=
aU

ap′

And therefore ap · ap′ = aU
2

= r2 So indeed this last way of construction gives
us the correct point p′.
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