
Burgers’ equation:

numerical models and

filtering

R. Bosma

Johannes Martinus Burgers (1895-1981) [9]

Master Thesis in Applied Mathematics

Supervisor: R.W.C.P. Verstappen

August 2008





Burgers’ equation:

numerical models and

filtering

R. Bosma

Supervisor(s):

R.W.C.P. Verstappen

Institute of Mathematics and Computing Science

P.O. Box 407

9700 AK Groningen

The Netherlands



Copyright (c) 2008 Ronald Bosma.



v

Preface

A little boy and his mother were walking in the local supermarket. From
isle to isle they walked, searching for the neccesary groceries. After a while
the shopping basket was filled and together they went to the check-out.
Whilst unloading the basket the boy quitetly spoke to his mother, telling
her exactly how much she had to pay...

Mathematics has always been an important part of my life and I have always been
fascinated by this versatile subject. Therefore it isn’t strange that in high-school my
favourite subject, along with music, was mathematics. Several of my classmates didn’t
see the purpose of it and therefore disliked it. Purpose or no purpose, math was fun.
Learning all about graphs and ”magic” numbers proved to be not only interesting, but
also useful. Mathematics really helped me, as well as many other people that walk this
earth, to explore and sharpen my level of abstract thinking. Abstract thinking helps
one to sum up problematic situations very quickly and learn how to deal with them
accordingly. Apart from learning basic arithmetic skills, the true purpose of high-school
mathematics in my opinion is to develop a greater sense of abstract thinking.
Thus I chose to take up mathematics at the university of Groningen (”Universiteit van
Groningen” or RuG for short). Although I hadn’t really given much thought on what
my future would look like afterwards, I still chose to study mathematics because that’s
what my heart told me to do. My choosing to go to the RuG was based on the fact
that the RuG appeared to be a kindhearted and warm university as well as it being
the nearest university.
It was only at the RuG that I got to know more about numerical mathematics and
technical mechanics. Aerodynamics and Computational Fluid Dynamics really got my
attention and I started to develop a profound love for these subjects. I wanted to know
more about boundary layers and the aerodynamics of cars, cyclists and since badminton
is one of my hobbys: shuttlecocks.
With this in mind I went to see professor Arthur Veldman to talk about my thesis. A
swift calculation showed that a badminton shuttle is too large and moves too fast for
the computers available at the RuG. Therefore professor Veldman suggested I should
contact Dr. Roel Verstappen, my supervisor, about Burger’s equation. Dr. Verstappen
has already done research in DNS methods for solving the Navier-Stokes equations. My
challenge lies in applying his DNS approach to Burgers’ equation and extend it to two
dimensions.
This report is the result of 2 years of hard work and has by far been the largest project
I have ever worked on. During this period I have had the support of several people
that are dear to me. I hereby want to thank them in no particular order

• Aaltje Lubbers. My girlfriend who kept faith in me and supported me in the most
loving manner.

• My father and mother. For their continuous support during my entire study.
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• Roel Verstappen. My supervisor, a very kind, gentle and patient person who with
his friendly smile really, probably unknowingly, motivated me in difficult times.

• Joop Helder. For sharing his knowledge and time at the end of my thesis.

• Everyone I have forgotten to mention...

I might have completed my study in more than the advised time, yet I do not regret
this at all. During my college years I have participated in a different variety of activities
through which I have improved my social skills and my knowledge of people. Things I
find equally important as sheer knowledge.
I have had a great time at the RuG with a lot of great memories. But now it is time for
me to take the next step in my life. The time has come for me to enter the ”working
world”.

Emmen, August 2008 Ronald Bosma
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1 Introduction

Direct Numerical Simulation is of great interest to the world of Computational Science
due to its proven precision. There are people who state that everything has a draw-
back and Direct Numerical Simulation (DNS) is no exception to this statement. The
drawback of this method in combination with computers nowadays lies in speed. This
method is rather slow compared to other methods. If we want to keep the precision of
the method we have to come up with a way to decrease the computation time of DNS.
In this paper we will apply four different DNS methods to Burgers’ equation, two La-
grangian methods and two Spectro-Consistent methods. We want to determine which
of these methods is most suitable to use for Burgers’ equation.
First we will look at a simple one-dimensional flow problem, without time, in order to
show which type of discretization method ought to be used to discretize both convec-
tive as well as diffusive terms of the Navier-Stokes equations. Part of this proces is to
find out whether the fourth-order versions of these methods outclass the second-order
versions.
Based on these one-dimensional results we will investigate how our programs handles
turbulence by looking at Burgers’ equation, still in one dimension, hence adding time.
From this investigation of different numerical methods we will see that the Spectro-
Consistent methods are always stable as opposed to the Lagrangian methods, which
are not always stable.
The second part of this paper will focus on applying filtering to the convective term of
Burgers’ equation. Reason for this is to be able to compute less small scales of motion
and therefore use coarser grids. We will first take a look at filtering in physical space
and finally take a look at filtering in spectral space. In spectral space we will take a
look the energy for different wavenumbers.
The structure of this document can be summarized by the following scheme:

• Decide what discretization methods to use for convective as well as diffusive terms
based on a one-dimensional flow problem;

• Decide to choose either second- or fourth order discretization methods;

• Apply a filter in physical space to the chosen discretization method;

• Convert Burgers’ equation to spectral space and apply filtering;

• Extend Burgers’ equation to two dimensions and apply a DNS method;

• And finally report our findings and conclude whether or not filtering should be
applied to these kind of problems and how filtering can efficiently used to speed
up DNS methods.

To obtain a complete image of this entire process, the problems encountered during the
process will be mentioned.
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2 A one-dimensional convection-diffusion problem

In order to get some understanding of Direct Numerical Simulation we will try to solve
the one-dimensional Burgers’ equation. At first we will take a look at a simplified
version of Burgers’ equation in order to compare four different methods: a second and
a fourth order Lagrangian method and a second and a fourth order Spectro-Consistent
method as proposed by Verstappen en Veldman in [3].
In the final part of this section we will try and solve Burgers’ equation using the Spectro-
Consistent methods.
The one-dimensional Burgers’ equation reads:

∂u

∂t
+ uc

∂u

∂x
− k

∂u2

∂2x
= f(x, t), (1)

where u(x, t) is the velocity in x-direction. t is time, k is the diffusive coefficent. The
right-hand side of the equation is f(x, t). In Burgers’ equation uc = u, creating a non-
linear convective term. However in the first part of our investigation we have chosen
uc to be constant, which is why we chose this particular notation. In another section
we will see the k = 1/Re, where Re is Reynolds’ number.

2.1 Simple case: Lagrangian or Spectro-Consistent?

At first we will rid ourselves of several terms of this equation. The velocity u(x, t) is
taken constant in time and uc is taken constant and equal to one. Furthermore we take
u(0) = 0 and u(1) = 1. Also f(x, t) is taken equal to zero. This leaves us the following
boundary problem:

∂u

∂x
− k

∂u2

∂2x
= 0, u(0) = 0, u(1) = 1. (2)

Eq. (2) is discretized using two second-order methods, from now on referred to as C2
and L2, where C2 stands for second-order Spectro-Consistent and L2 stands for second-
order Lagrangian. Likewise the equation is also discretized using two fourth-order
methods, C4 and L4. C4 being a fourth-order Spectro-Consistent and L4 a fourth-
order Lagrangian method. These methods are described in the following section.
The naming of the spectro-consistent methods is chosen as proposed in [8].

2.1.1 In depth mathematics

The main difference between the Spectro-Consistent and the Lagrangian methods is
merely a different way of discretising the convective term ∂u

∂x
. In accordance with the

naming of the different methods the convective term is discretized using second- and
fourth-order Spectro-Consistent and Lagrangian methods. Whereas the diffusive term,
−k ∂u2

∂2x
is in both the C2 and C4 as well as in the L2 and L4 methods discretized using

a Lagrangian scheme of the accessory order. In the fourth-order methods also Richard-
son extrapolation is used with the equivalent second-order discretizations applied to a
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larger-sized grid.
As was mentioned before uc is taken constant in the convection-diffusion equation Eq.
(1). The spatial discretization of Eq. (1) can now be given in matrix-vector form. This
results in:

Ω0
duh

dt
+ C 0(uc)uh + D0uh = f , (3)

where the vector uh is built of the discrete velocities ui(= u(xi)) and Ω0 is a diagonal
matrix with the spacings of the mesh as its entries:
(Ω0)i,i = 1

2
(xi+1 − xi−1). The tridiagonal matrix C 0 represents the convective operator

whereas D0, which is also tridiagonal, represents the diffusive operator. f is the vector
which, in analogy to uh, is the discrete representation of the right-hand side f(x, t) of
Eq. (1).
In this discrete form of Eq. (1) time is still included, while we wanted to look at the
case whitout time. Removing time must be done with care because of the term Ω0

preceeding duh

dt
. Multiplying the entire equation Eq. (3) with Ω−1

0 before taking out
time, gives us the correct numerical form of Eq. (2)

Ω−1
0 C 0(uc)uh + Ω−1

0 D0uh = 0 (4)

In Eq. (4) f is taken zero, since in Eq. (2) f(x, t) is also zero.

2.1.2 L2 and C2

In the L2 and C2 methods D0, is the same. Truncating Taylor-series in a smart way
leads to

D0 = k∆∗
0Λ

−1
0 ∆0,

where ∆0, the difference matrix, is defined by (∆0uh)i = ui − ui−1 and Λ0, a diagonal
matrix, is defined by (Λ0)i,i = δxi, with δxi = xi−xi−1. The convective term however is
treated differently. In the L2 method the convective term is found in the same manner
as the diffusive term. Taylor-series expansions lead to

∂u

∂x
(xi) ≈

δx2
i ui+1 + (δx2

i+1 − δx2
i )ui − δx2

i+1ui−1

δxi+1δxi(δxi+1 + δxi)
(5)

Note that equation Eq. (5) can also be obtained by constructing a second-order poly-
nom, a parabola, through the three points (xi−1, ui−1), (xi, ui) and (xi+1, ui+1) and
differentiating that parabola at x = xi.
Intuitively this appears to be the best approximation of the derivative constructed
from three given points, and regarding the local truncation error it is. The backdraw of
this approach lies in the fact that it doesn’t yield the physical property of energy con-
servation and other properties the continuous problem conserves. In problems where
turbulence is involved energy conservation is, as we shall see, particularly important
because of the subtle interaction between convective transport and physical dissipation
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also at small scales of motion.
As can be seen in [3], C 0(uc) has to be skew-symmetric in order to establish discrete
energy conservation:

C 0(uc) + C ∗
0(uc) = 0 (6)

The L2 method described in Eq. (5) will not lead to a skew-symmetric C 0(uc) since,
for nonuniform grids, it will have nonzero diagonal entries.

The C2 method however, is constructed on physical grounds:

uc

∂u

∂x
(xi) ≈ uc

ui+1 − ui−1

xi+1 − xi−1

=
(
Ω−1

0 C 0(uc)uh

)

i
, (7)

where the entries of the tridiagonal matrix C 0(uc) are given by C 0(uc)i,i−1 = −1
2
uc,

C 0(uc)i,i = 0 and C 0(uc)i,i+1 = 1
2
uc, resulting in a skew-symmetric C 0(uc).

This could also have been obtained by constructing a straight line through the points
(xi−1, ui−1) and (xi+1, ui+1) and taking its derivative at x = xi.
The discussion regarding these two methods will be performed after the introduction
of the fourth-order methods.

2.1.3 L4 and C4

Higher-order methods usually give better results due to smaller truncation errors op-
posed to lower-order methods. This also holds for DNS methods.
Therefore Eq. (3) is going to be transformed into a fourth-order method. In order to
achieve this, a similar equation will be constructed using a two times larger control
volume:

Ω2
duh

dt
+ C 2(uc)uh + D2uh = 0 , (8)

where Ω2 is a diagonal matrix with (Ω2)i,i = 1
2
(xi+2 − xi−2). C 2(uc), the convective

term, is given by (C 2(uc)uh)i = 1
2
uc(ui+2−ui−2). The diffusive term D2 = k∆∗

2Λ
−1
2 ∆2

is given by (∆2uh)i = ui+1 − ui−1 and (Λ2)i,i = xi+1 − xi−1. Note that since we have
taken f to be 0 in this example, the right-hand side of Eq. (8) equals 0.
The leading term in the discretization error can be removed if Richardson extrapolation
is applied to Eq. (3) and Eq. (8). The errors in these expressions are third-order errors.
On a uniform grid we would now have to take 23× Eq. (3) − Eq. (8). On a non-uniform
grid the same weights are taken in order for us not to break the symmetry. This leads
to the following system:

(8Ω0 − Ω2)
duh

dt
+ (8C 0(uc) −C 2(uc))uh + (8D0 −D2)uh = 0 (9)

Taking out time in the same manner as above gives:

(8Ω0 − Ω2)
−1(8C 0(uc) −C 2(uc))uh + (8Ω0 − Ω2)

−1(8D0 −D2)uh = 0 (10)
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2.1.4 Starting the battle: error analysis

The boundary problem Eq. (2) can be solved analytically, therefore the solutions found
using the four methods mentioned above, can be compared to the exact solution of
the problem. We can define the error as the norm of the difference between the exact
solution computed at the grid-points and the numerical approximation of the solution
at the grid-points using the different methods.
The grid is chosen by dividing the interval [0, 1] into two different intervals [0, 1−d] and
[1 − d, 1] with 0 < d < 1. Both intervals will contain an equal amount of gridpoints.
If we vary the total number of gridpoints N , we can construct an error curve from the
errors we get for each individual number of gridpoints by simply connecting the points.
Doing so for all four methods with k = 0.001, N = 8, 16, 32, 64, 128 and d = 10k = 0.01,
the following figure can be made:

Figure 1: Comparing second- and fourth-order Spectro-Consistent and Lagrangian
methods.

Looking closely at Figure 1 it can be seen that the errors for the Lagrangian methods
become substantially large on the coarser grids. The Spectro-Consistent methods give
better results and the C4 method appears to be superior to the C2 method, as had
been predicted.
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2.1.5 Round two: C2 vs C4

Since L2 and L4 are out of the league of C2 and C4, we will now focus on whether or
not C4 is indeed a better method than C2. A more interesting and challenging problem
is found when uc is not taken constant:

u
∂u

∂x
− k

∂u2

∂2x
= 0, u(0) = 0, u(1) = 1. (11)

In the absence of an exact solution, we create an approximation of the exact solution
by simulating the solution on a dense grid, N ≥ 600, using the C4 method.
The same grid-structure and values of k, N and d as were used before, leads us to the
following error-figure:

Figure 2: Comparing second- and fourth-order Spectro-Consistent methods.

First of all note that on the horizontal axis 1/N represents the gridsize. The C4 method
is the better method in general, as can be seen in the figure. However for small grids
the C2 method tends to be equally good if not better than the C4 method. This can be
explained by the fact that the inner part of these smaller grids consist of a number of
points of the same order as the number of points on the boundary. Since the boundary
is treated equally in both the C2 and C4 method and the inner part of the grid is of the
same order, the overall performance of the methods will be approximately the same.
For large grids both methods appear to be equal as well. As was mentioned above,
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the exact solution is merely an approximation on a dense grid. The largest grid in
Figure 2 consists of 128 gridpoints which is approximately a quarter of the number of
gridpoints used for the ”exact” solution. Therefore the error of both the ”exact” and
the approximated solution are almost the same. This holds for both methods and the
error therefore is of the same order. Combining the above we can conclude that the C4
method outclasses the C2 method.

2.1.6 Outcome of the battle

In [1] Veldman and Verstappen show us that the eigenvalues of both the L2 and L4
methods lie in the instable halfplane causing this instability. The Spectro-Consistent
methods however will never have instable eigenvalues because of the way these methods
are constructed.
In Figure 1 these results are confirmed and although the Lagrangian methods at first,
by construction, appear to be superior to the Spectro-Consistent methods, research
and theory have proven the opposite. Therefore from now on we will merely investigate
the Spectro-Consistent methods. Furthermore the results show us that overall the C4
method gives better results than the C2 method.

2.2 Adding time

In general we can state that the spatial discretization of Eq. (1) is of the following form,
regardless of the method being used being second order or fourth order:

Ω
duh

dt
+ C (uc)uh + Duh = f (12)

Until this point we have considered the convection-diffusion equation Eq. (1) without
time, or in mathematical terms with ∂u

∂t
= 0. Due to both the absence of time and

the fact that uc was either taken constant or equal to u, the Jacobian matrix of the
left-hand side of Eq. (4) could be computed. Therefore the equation could be solved
using Newton’s method as described on pages 108-109 of [4].
To determine whether the Lagrangian method or Spectro Consistent method is better,
Newton’s method delivered pleasing results and was fast. The boundary problem Eq.
(2) has been used to show that the Spectro Consistent approach is always stable and
the Lagrangian approach is not.
In order to be able to simulate real-life problems, we have to take turbulence into ac-
count. Turbulence however is a time dependent phenomena. Therefore in order for us
to get a feeling for turbulence, we have to add time, or in mathematical terms we have
to take ∂u

∂t
6= 0.

Adding time leads to the problem that the Jacobian matrix cannot be determined an-
alytically anymore and hence Newton’s method cannot be used to solve the differential
equation. Thus another method has to be used to solve the problem.
This calls for a finite difference method like Euler’s method. This method is described
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in [4] at page 341. Other more sophisticated methods like Adam’s method could of
course also be used, but we will limit ourselves to the slower but easier implementable
Euler method.
In the next section we would like to apply filtering to the convective term. Using Euler’s
method we will be able to compute the solution to the boundary problem Eq. (1) and
still be able to integrate a filter to control the convective term.
Before we will look at the time we will first verify the correctness of the program using
Euler’s method giving us more insight in the convection-diffusion problem.

2.2.1 Verification of the correctness of the program using Euler’s method

As has been mentioned we will verify whether or not the program, which now uses
Euler’s method instead of Newton’s method, provides us with correct answers. With
Euler’s method we can not only compute the solution of the system in time for a given
time-interval, but we can also compute a steady-state solution which means a solution
with ∂u

∂t
= 0. We will now shortly explain the Euler method and how this method can

be used to create a steady-state solution.
The first step we have to take is to rewrite our system Eq. (1) in the following form:

∂u

∂t
= h(u, x, t), (13)

with h(u, x, t) = −uc
∂u
∂x

+ k ∂u2

∂2x
+ f(x, t).

This is exactly the type of equation the Euler method can be used for. If we take
u(m+1)−u(m)

△t
to be the approximation for ∂u

∂t
, then the Euler method is nothing more

than the following:
u(m+1) = u(m) + △t · h(u(m), x, t), (14)

where △t is the chosen timestep, u(m+1) and u(m) are two subsequent approximated
solutions in the time-dimension and h(u(m), x, t) is defined as above.
If given a start vector u0 this method is computed for sufficiently large m, u(m+1) and
u(m) will be close to each other, meaning u(m+1) − u(m) = 0 and therefore ∂u

∂t
= 0. In

other words, a steady-state solution has been reached. In this way it is clear that it is
possible to generate steady state solutions of Eq. (1).
Knowing this we can proceed to the actual verification. We will verify two things: first
we will verify whether the boundary conditions are implemented properly and second
we will verify whether the correct solution is computed. In the following two subsections
these verifications will be discussed seperately.

2.2.2 Verification: boundary conditions

In order to verify the correctness of the solution of the system Eq. (13), two different
problems will be solved. At first we will solve the system h(u, x, t) = 0 with u(0) =
1 and u(1) = 2. This will produce the solution u. Next we will solve the system
h(v + 1, x, t) = 0 with v(0) = 0 and v(1) = 1, producing the corresponding solution v.
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This substitution u = v + 1 leads to the following relations: ∂v
∂x

= ∂u
∂x

and ∂v2

∂2x
= ∂u2

∂2x
.

Thus the only point at which the systems differ is at the convective term. In the first
case it is u∂u

∂x
and in the second it is (v + 1)∂u

∂x
.

For several values of N this comparison has been made and the outcome can be seen
in Table 1.

N C2: ||u − (v + 1)||∞ C4: ||u − (v + 1)||∞
16 4.8850·10−15 2.3759·10−14

32 1.0103·10−14 1.7319·10−14

48 1.0880·10−14 2.1538·10−14

64 7.9936·10−15 5.6621·10−14

Table 1: Verification of adjustable boundary values.

From Table 1 we see that all computations lead to the same solution: The differences
are all in the order of 10−14. Since boundaries are not the easiest part of a differential
equation to implement, this result is satisfying.

2.2.3 Verification: correctness of the solution

After verifying that the boundaries are treated correctly it is now time to verify the
correctness of the entire solution. In order to do this, we will create a test-case that gives
us the opputunity to compare the computed solution to a known analytical solution.
As has been mentioned before, the solution to Eq. (2) can be determined analytically.
If we now can generate a right-hand side such that the steady-state solution to Eq. (12)
will also be that very same analytical solution, we can compare the two and verify the
correctness of the computed solution.
We can now construct a right-hand side f such that the steady-state solution of Eq.
(1) is known. We will do this by chosing f as follows:

f(x, t) = f(x) = ua

∂ua

∂x
− k

∂u2
a

∂2x
, (15)

with ua the analytical solution to Eq. (2):

ua(x) =
uN − u0

1 − e
x0−xN

k

e
x−xN

k + u0 − e
x0−xN

k
uN − u0

1 − e
x0−xN

k

(16)

In this example we can simplify this equation, since we already know that x0 = u0 = 0
and xN = uN = 1. This leads to:

ua(x) =
e

x−1
k

1 − e
−1
k

− e
−1
k

1 − e
−1
k

=
e

x−1
k − e

−1
k

1 − e
−1
k

(17)
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For N = 16, 32, 64, 128 we have computed the solution to the resulting equation and
compared the answers to the analytical solution. We have chosen ||u − ua||∞ to mea-
sure the correctness of the solution. ua is the analytical solution and u the computed
solution. This leaves us the following results:

N C2: e(N) = ||u − ua||∞ C4: e(N) = ||u − ua||∞
16 4.0523·10−2 1.6053·10−2

32 5.7864·10−3 2.7521·10−4

64 9.3933·10−5 1.9362·10−5

128 2.8848·10−5 2.9244·10−6

Table 2: Verification of the correctness of the computed solution.

From this table we can conclude three things. First of all we can confirm what we
already new: the C4 method is superior to the C2 method. Secondly we can state that
denser grids provide us with more precise answers and third, last and most importantly
we can conlude that our program computes correct answers. For the coarse grid of
merely 16 gridpoints still a precision of 10−2 is obtained and for denser grids the pre-
cision increases.
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3 Filtering

In the introduction we already mentioned the intention to use a smoothening filter.
The reason for us to apply filtering is the following. In order to simulate an accurate
solution using a DNS method, small scales of motion (and complementary energy) have
to be computed. Hence a dense grid has to be used in order to be able to sufficiently
compute small scales of motion.
Small scales of motion are not of interest in real-life examples, however they are nec-
essary to produce an accurate solution. Therefore we propose to apply filtering to the
convective term, in order to see whether we can accurately simulate larger scales of
motion, whilst ignoring the smaller scales of motion. If we are able to do so, coarser
grids can be used which allows us to save on computation time. Furthermore DNS
methods applied to the non-linear model appear to be more accurate compared to the
linear model.
We will now first suggest a filter, based on the Gauss-Jacobi method, and explain why
this filter might be of interest.

3.1 Gauss-Jacobi filter: definition

The filter we are going to use is based on the iterative Gauss-Jacobi method for solving
sytems of equations of the form Ax = b. This method is fully explained on page 545 of
[4]. We will recite the method. First Ax = b is rewritten in the following form:

xi =
1

aii

{bi −
n∑

j=1,j 6=i

aijxj}, i = 1, 2, . . . , n (18)

All aii have to be nonzero. Now we can define the iteration as follows:

x
(m+1)
i =

1

aii

{bi −
n∑

j=1,j 6=i

aijx
(m)
j }, i = 1, . . . , n and m ≥ 0 (19)

Furthermore we have to assume that the starting values x
(0)
i , i = 1, . . . , n are given.

This is merely the definition of the Gauss-Jacobi method and we still need to describe
in what way we will use it with our filter.
In order to complete the filter the following differential equation is also needed:

û + ε2∆û = ũ, (20)

where û is the solvant of this equation, ũ its right-hand side and ε a parameter.
The numerical representation of Eq. (20) is:

(I + ε2Ω−1D)û = u , (21)

where u is the discete solution of Eq. (12). Eq. (21) is now solved using Eq. (19). This
can be represented in a numerical way as follows:

û(m+1) =
u − ((I + ε2Ω−1D) − diag(I + ε2Ω−1D))û(m)

diag(I + ε2Ω−1D)
, (22)
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where diag() is a function which constructs a matrix which only consists of the diagonal
entries of its argument, other non-diagonal entries are zero.
Since diag(I ) = I , this equation can be rewritten in a more simple form as follows:

û(m+1) =
u + ε2(diag(Ω−1D) − Ω−1D)û(m)

diag(I + ε2Ω−1D)
(23)

We have not discussed the parameter ε yet. This parameter makes the filter adjustable
and hopefully we can get some insight in how to set this parameter for different gridsizes.
This is one way to adjust the filter. The other way is to use a different number of
iteration steps of the Gauss-Jacobi method.
Note that the filter is not applied locally, but to an entire vector.
Now that we have defined the filter, we can look at its behaviour.

3.2 Gauss-Jacobi filter: behaviour

After defining the filter we can now look at how the filter behaves. We will verify that
the filter smoothens the convective term. In this section we will construct two different
examples. The first one will show that the filter does not alter the identity map. And
the second one will show whether or not the filter has the ability to make a solution
smoother. We will also explain the meaning of “smoother”.
In the Gauss-Jacobi filter u is the input and the output is û(m+1) for a certain value
of m. To show that the identity map is not altered by the filter, two figures have been
constructed. In Figure 3 x has been inputted in the filter and the filter has been applied
to x for a total of 10 iteration- or filtersteps. This filtered x, x̂(10), is plotted against x
itself. And finaly in Figure 4 x̂(100) is plotted against x. Note that ε = 0.5.
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Figure 3: Gauss-Jacobi filter: x̂(10) vs. x.
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Figure 4: Gauss-Jacobi filter: x̂(100) vs. x.

From these figures we can conclude that both x̂(10) and x̂(100) appear to be indentical. A
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more mathematical and conclusive answer can be given by looking at both ||x̂(10)−x||∞
and ||x̂(100) − x||∞. These are both equal to 2.2204 · 10−16 and therefore it can be
concluded that the identity map is preserved by the filter. It is also important to note
that as a result of how the boundary is treated and the choice of input, it makes no
difference whether we use the C2 or the C4 version of the filter. In our example we
have used the C2 version and in the next we will use this version as well.
In the second example we have constructed we will look at the solution u to Eq. (11).
We choose to use the solution for N = 32 and k = 0.001. We will now create four
figures. In the first figure we will merely plot u against x. The other three figures will
consist of û(j) with j = 10, 100 and 1000 plotted against x, where û(j) is constructed
from u in the same way as the x̂(j) from above were constructed from x. To indicate
the effect of the filter in the latter three figures also u against x is plotted (thin line).
This results in the following figures:
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Figure 5: Gauss-Jacobi filter: u vs. x.
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Figure 6: Gauss-Jacobi filter: û(10) vs. x.
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Figure 7: Gauss-Jacobi filter: û(100) vs. x.
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Figure 8: Gauss-Jacobi filter: û(1000) vs. x.



16 3 FILTERING

It is clear that the more filter steps are applied to u, the ”higher” the solution becomes,
especially at the right boundary. But in this case higher also means smoother. The
thin boundary that is created in the differential equation Eq. (11) at the right boundary
xN is now flattened out somewhat. In other words the slope of the right side of the
figures becomes less steep and thus the solution becomes smoother.
An important note we have to make is the following. When we are filtering, in essence
we are solving the differential equation Eq. (20) for a certain ε. This means that if we
take a large enough number of filter steps, the solution of this equation will be reached
and would not change any further if we were to take more filter steps. This means that
there is a limit to the extent of how much we can smoothen the solution.
Another note that deserves mentioning is the fact that if ε increases, the filter will
smoothen the solution further to the left. This is illustrated in Figure 9 and Figure 10
where ε is respectively chosen to be 2 and 100 and the number of filter steps in both
cases is 10.
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Figure 9: Gauss-Jacobi filter: û(10), ε = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u 10

Figure 10: Gauss-Jacobi filter: û(10), ε =
100

This behaviour of the solution smoothening more to the left for larger ε also has a limit
as to the amount the smoothening travels to the left. This behaviour can be explained
mathematically if we look more closely at the solution to Eq. (20).
It is easy to show that the solution û to Eq. (20), with boundary values u(0) = 0 and
u(1) = 1 is as follows:

û =
sin(x

ε
)

sin(1
ε
)

(24)

If ε is chosen large enough sin(1
ε
) ≈ 1

ε
. Hence the solution can be simplified to:

û =
sin(x

ε
)

sin(1
ε
)
≈

x
ε
1
ε

= x (25)
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For ε > 1 this effect can already be noticed. This implies that the solution evolves to
a straight line. If we only use a small number of filter steps the solution has to move
towards this straight line. In other words it has to become smoother on the entire grid.
The larger we chose ε the faster this happens due to the sine approximation. This
means that for larger ε the smoothening effect appears also more to the left of the grid
in stead of merely in the steeper right boundary layer as opposed to smaller ε. The
theory explains the smoothening effect as we have seen in the examples.

3.3 Steady-state filtering

In this section we will first of all look at the effect of filtering when we are trying to
solve Eq. (2). We will solve this problem with our program using the aforementioned
Euler-method. As a next step we will also try to solve Eq. (1) using the right-hand side
Eq. (15) and as before we will look at the effect of filtering.
Since both problems generate the same, analytically known, solution, this comparison
can easily be made. Note that the only real difference between these problems is the
difference in the convective part of the equation. In the first case we merely have ∂u

∂x
,

whereas in the second case the term complete convective term u∂u
∂x

is computed. Note
that in the latter case u is not taken to be equal to 1 as opposed to the first case.

3.3.1 Steady-state filtering: ∂u
∂x

For N = 24 we have ran the program using respectively 1, 2 and 10 filter-steps for both
the C2 and C4 method. For ε we chose 0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3,
0.5, 1, 3 and 5. This results in the following 6 figures.
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Figure 11: Steady-state filtering: error vs.
ε; N = 24, C2 method, filter-steps = 1
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Figure 12: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 1
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Figure 13: Steady-state filtering: error vs.
ε; N = 24, C2 method, filter-steps = 2
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Figure 14: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 2
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Figure 15: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 10
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Figure 16: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 10

From these figures we can see that filtering in general worsens the precision of both
methods. For the C2 method we can see that a marginal improvement can be achieved
if the right value is chosen, however this value is strongly dependent of the parameters
of the problem.

3.3.2 Steady-state filtering: u∂u
∂x

Again the stead-state solution will be computed for N = 24 using both the C2 and C4
method. Using the same filter-steps as above, 1, 2 and 10, the steady-state solution has
been computed only this time the convective term was not set to 1, but the right-hand
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side has been been chosen in such a way that the exact solution to the problem is the
same as though the convective term had been chosen equal to 1.
From this we can see if this approach, taking the convective term into account, leads to
better results then setting omiting the convective term as we have done in the previous
paragraph. The following figures have been created based on the computed solutions.
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Figure 17: Steady-state filtering: error vs.
ε; N = 24, C2 method, filter-steps = 1

10
−3

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

Epsilon (filter steps = 1)
|u

sc
4−

u ex
| ∞

Figure 18: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 1
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Figure 19: Steady-state filtering: error vs.
ε; N = 24, C2 method, filter-steps = 2
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Figure 20: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 2

From these figures we can conclude that the C2 method leads to different results then
the C4 method. The latter produces results similar to the previous paragraph, whereas
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Figure 21: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 10
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Figure 22: Steady-state filtering: error vs.
ε; N = 24, C4 method, filter-steps = 10

the C2 method does seem to improve when applying filtering. However this improve-
ment is still marginal and is highly dependent of the number of gridpoints and of the
method used to compute the time-component, or in this case the steady-state compo-
nent.

3.4 Steady-state filtering: conclusion

In computing the steady-state solution to our problem, filtering has little to no effect on
the accuracy of the solution. In several cases one of the two methods we used, either C2
or C4, can produce slightly more accurate results, both no real beneficial or structural
improvements can be observed.
As we noted, the filtering proces we chose involved filtering an entire vector. A different
approach is to filter locally: to modify the value in a point by also taking the values
of its neighbours into account. Furthermore, we can also look at Burgers’ equation in
spectral space. In this way we can look at the energy of different modes.
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4 Restraining subgrid-scales in 1D Burgers’ equa-

tion

As has been anounced at the end of the previous section, in this section we will look
at Burgers’ equation. More specifically we will look at the energy of Burgers equation
in Fourier space and apply a filter in order to restrain the energy at subgrid-scales.
As has been stated in the previous section, we want to limit the computation of the
smallest scales and still be able to simulate the energy caused by convection and diffu-
sion accurately among the largest of the remaining scales.
We shall see that by filtering carefully, we can actually restrain subgrid-scales and
compute larger scales accurately. Furthermore we will show that for different types of
problems the energy will show a pattern.
At first the 1D Burgers’ equation in spectral space and the filtering methods are intro-
duced. Afterwards we will discuss the results.

4.1 1D Burgers’ equation in spectral space

Since we are going to transform Burgers’ equation to spectral space, we will introduce
new notation to represent Burgers’ equation. In one dimension Burgers’ equation reads:

∂u

∂t
+ C(u, u) = D(u) , (26)

where C(u, v) = u ∂v
∂x

and D(u) = ∂u2

∂2x
/Re and Re is the Reynolds number. Eq. (26) is

considered on an interval with periodic boundary conditions.

Henceforth in Fourier space Burgers’ equation reads:

∂ûk

∂t
+ Ck(û, û) = −(k2/Re)ûk + Fk , (27)

where ûk is the k-th Fourier coefficient of u(x, t).
Fk is a forcing term which has been added in order to obtain non-trivial solutions. The
forcing term is only applied at the first scale k = 1. For k = 1 the forcing term is taken
such that ∂û1

∂t
= 0∀t and Fk ≡ 0 for k > 1.

Furthermore

Ck(û, û) =
kc∑

p=1
p+q=k

ûpipûq , (28)

where kc is the cut-off wavenumber of the numerical solution. All interactions between
modes ûp and ûq with p + q = k and p = 1, . . . , kc are captured in this term.
For further details regarding the numerical representation of Burgers’ equation in
Fourier space we refer to [6] and [7].
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4.1.1 Evolution of enstrophy

If ω denotes the enstrophy of Burgers’ equation in physical space, Eq. (26), then in
Fourier space according to [6] the evolution of the enstrophy is given by:

∂ω̂kω̂
∗
k

∂t
= −(2k2/Re)ω̂kω̂

∗
k − ik(ω̂∗

kCk(û, û) − ω̂kCk(û, û)∗) , (29)

with ω̂k = ikûk.

The convection-diffusion equation and Burgers’ equation are both connected to the
Navier-Stokes equations. As is stated in [7], for the Navier-Stokes equations, an increase
in enstrophy will lead to the production of smaller and smaller scales of motion. This
will lead to a point where these small scales can not be represented anymore on the
chosen computational grid.
For Burgers’ equation the evolution of enstrophy at the smallest scale is:

∂ω̂kc
ω̂∗

kc

∂t
= −(2k2

c/Re)ω̂kc
ω̂∗

kc
− ikc(ω̂

∗
kc
Ckc

(û, û) − ω̂kc
Ckc

(û, û)∗) , (30)

as has been stated, kc is the cut-off wavenumber of the numerical solution. On a uniform
grid with spacing h this means that kc = π/h.
In order for the enstrophy not to grow

∂ω̂kc
ω̂∗

kc

∂t
≤ 0 (31)

is required.

In the next section we will take a look at a method to restrain the enstrophy, by
applying a filter to the non-lineair term Ck(û, û).

4.2 Restraining method

In analogy to section 3 we will approximate Ck(û, û) by C4,k(û, û):

C4,k(û, û) =
kc∑

p=1
p+q=k

f(Ĝk, Ĝp, Ĝq)ûpipûq , (32)

where Ĝk denotes the Fourier transform of the kernel of the convolution filter and

f(Ĝk, Ĝp, Ĝq) = Ĝk(Ĝp + Ĝq) + ĜpĜq(1 − 2Ĝk) , (33)

In accordance to [6] f(Ĝk, Ĝp, Ĝq) is a monotone function of Ĝk, Ĝp and Ĝq and reduces
every nonlinear interaction.
Since the value of f(Ĝk, Ĝp, Ĝq) is dependent on p and q, the terms in the summation
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in the right-hand side of Eq. (32) are damped differently. If a filter can be constructed
which is almost independent of p and q (for p+q = kc), the filter can be applied outside
the summation which decreases the time necessary to compute the filter. The filter will
be merely dependant of Ĝkc

, thus

C4,kc
(û, v̂) ≈ f̃(Ĝkc

) Ckc
(û, v̂) (34)

f̃(Ĝkc
) can be computed by setting the evolution of the enstrophy of mode kc to 0,

equation Eq. (30), and by replacing Ckc
by C4,kc

:

f̃(Ĝkc
) =

2ikcω̂kc
ω̂∗

kc

Re(ω̂∗
kc
Ckc

(û, û) − ω̂kc
Ckc

(û, û)∗)
(35)

We will now discuss the choice of the filter for the restraining method.

4.2.1 Choice of the filter for the restraining method

In this section we will denote the filter which has been used for the restraining method.
For the analysis on how the filter was chosen, we refer to [7]. After some calculation as
proposed in [7] using the relation ω̂k = ikûk, f̃(Ĝkc

) can be determined:

f̃(Ĝkc
) = 1 −

√
c , (36)

with

c =
2k2

c ûkc
û∗

kc

Re(û∗
kc
Ckc

− ûkc
C∗

kc
)

(37)

Note that c = f̃(Ĝkc
), with f̃(Ĝkc

) as mentioned in Eq. (35).
Filtering is merely applied if 0 ≤ c ≤ 1. This condition coincides exactly with the
condition mentioned at Eq. (31). For 0 ≤ c < 1

2
a three point filter in physical space is

taken and for 1
2
≤ c ≤ 1 a five point filter in physical space is taken. This transfers to

the following filter in spectral (Fourier) space:

f̃(Ĝk) = −Ĝ2
k + 2Ĝk k = 1 . . . kc , (38)

where Ĝk = c0 + 2c1 cos(kh) + 2c2 cos(2kh). In this formula h is the grid size on a
uniform grid in physical space and kc = h

π
.

For the three point filter c0, c1 and c2 are chosen as follows:

c2 = 0 (39)

c1 =
1 − Ĝkc

4
(40)

c0 =
1 + Ĝkc

2
, (41)
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and for the five point filter as follows:

c2 =
1 − 3Ĝkc

+ 2Ĝ2
kc

16(1 + 2Ĝkc
)

(42)

c1 =
1 − Ĝkc

4
(43)

c0 = −2c2 +
1 + Ĝkc

2
, (44)

4.2.2 Filter condition in discrete time

If we integrate Burgers’ equation in time using a forward Euler scheme in analogy to
[6], the discrete time evolution of the energy is given by

[ûk]
n+1[û∗

k]
n+1 − [ûk]

n[û∗
k]

n

δt
= [û∗

k]
n[Wk]

n + [ûk]
n[W ∗

k ]n + δt[Wk]
n[W ∗

k ]n , (45)

where n and n+1 respectively denote the old and new time levels, δt the timestep and
Wk = −C4,k(û, û) − k2

Re
ûk. We propose to alter the filter condition using this discrete

evolution.

c =
−a2 +

√
a2

2 − 4a1a3

2a1

, (46)

with

a1 = δtCkc
C∗

kc
(47)

a2 = (δt

k2
c

Re
) − 1)(ûkc

C∗
kc

+ û∗
kc
Ckc

) (48)

a3 = − k2
c

Re
(2 − δt

k2
c

Re
)ûkc

û∗
kc

, (49)

In the next section we will compare the results without filtering to both filtering meth-
ods.

4.3 Results

In this section we first will show and discuss whether or not filtering has a positive effect
to determine the correct solution after which we will show and discuss the difference
between the two different filtering methods as mentioned above.
In analogy to [7] we have chosen to solve Burgers’ equation for Re = 50. As initial
condition ûk = 1

k
and a time step δt = 0.001 have been chosen.
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4.3.1 DNS vs regularization method

In this section we will show that the regularization method will conserve energy and
henceforth will capture the physics correctly.
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Figure 23: Energy spectrum of the steady-state solution of Burger’s equation,
with and without filtering, for kc = 20 and δt = 0.001.

Figure 23 shows the energy spectrum of the steady state for kc = 20 and δt = 0.001. A
DNS spectrum with kc = 100 and δt = 0.0005 has been added as a reference. It can be
concluded that the direct simulation without filtering is not capable of capturing the
physics correctly. The energy is not dissipated enough at the higher wavenumbers and
is sent back towards lower wavenumbers, resulting in ”wiggles”.
The regularization model uses energy conservation. Therefore a small hump arises to
compensate for the loss of energy near kc = 20.

4.3.2 Continous condition vs discrete condition

In this section we will show the following: if we use the regularization method using c
as proposed in Eq. (37) the energy may still grow due to the fact that the continuous
condition is discretized which can lead to numerical errors. However the regularization
method which uses c based on the evolution of the discrete energy as proposed in Eq.
(46) fully conserves energy.
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Figure 24: Results using the regularization method with both the continuous and
discrete condition, for kc = 20 and δt = 0.001. Left: see Figure 23. Right: evolution of
the energy in time at the highest wavenumber ekc

The right figure in Figure 24 shows that the regularization method using the discrete
condition fully conserves energy at the highest wavenumber kc, whereas the energy at
regularization method using the continuous condition grows in time for certain values
of t.

In order to verify whether the regularization method using the discrete condition yields
the same results for different values of kc, the program has also been run for kc =
20, 30, 40 and 50. This results in the following figure:



4.3 RESULTS 29

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

e k

Figure 25: Energy spectrum of the steady-state solution of Burger’s equation,
with and without filtering, for kc = 20, 30, 40 and 50 and δt = 0.001.

From this figure can be concluded that the chosen method shows the same pattern for
each value of kc.

4.3.3 Conclusion

From the above we can conclude that for the solution of the one dimensional Burg-
ers’ equation the regularization method using the numerical condition from the dis-
crete evolution of energy is able to generate physically correct solutions, at the highest
wavenumbers. For smaller wavenumbers the solution is not correct. However the en-
ergy shows the same pattern for different values of kc: after a certain value of k, there
is a small rise in energy after which there is a large drop in energy.
From this we can conclude that it might be possible to use the filtered solution to deter-
mine which part of this filtered solution we can use to approximate the real, physically
correct solution.
In the next section we will take a look at Burgers’ equation in two dimensions.
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5 Burgers’ equation in two dimensions

In analogy to the previous section we will now try to model the 2D version of Burgers’
equation in the same manner as the 1D version by looking at the equation in spectral
space.
Before we take a look at the equation in spectral space, we will recite the 2D equation
in physical space:

∂u

∂t
+ C(u ,u) = D(u) , (50)

where u = (u, v), C(u , v) = (u · ∇)v and D(u) = ∆u/Re. Our approach will be
to transfer both the u-equation and the v-equation to spectral space and to compute
them seperately. Note that the u-equation and v-equation are coupled through the
convective term.
In 2D each dimension can have a different number of modes and the solution will be
computed for each combination of these modes. For comparison we will try to obtain
the same results in 2D as we did in 1D. Furthermore we will compute the solution
for combinations of larger number of modes and look at the energy. We want to find
out whether the 2D case is in accordance with the 1D case regarding the patterns
the energy show. Furthermore we will discuss the difficulties we encountered in the
modelling proces and discuss the results.

5.1 Spectral space

As has been mentioned above, there will be two equation, the u-equation and the v-
equation. This will also be the case in spectral space. Furthermore, since we will
compute in 2D, there will be modes in two dimensions as well. Henceforth Burgers’
equation in 2D reads:

∂ûk1k2

∂t
+ Ck1k2(û, û, ∂x1) + Ck1k2(v̂, û, ∂x2) = −k2

1 + k2
2

Re
ûk1k2 + Fk1k2 (51)

∂v̂k1k2

∂t
+ Ck1k2(û, v̂, ∂x1) + Ck1k2(v̂, v̂, ∂x2) = −k2

1 + k2
2

Re
ûk1k2 + Fk1k2 , (52)

where

û =
kc1∑

k1

kc2∑

k2

uk1k2e
ik1x1eik2x2 , (53)

and Fk1k2 is a forcing term which has been added in order to obtain non-trivial solutions.
The forcing term is only applied at the first scales k1 = 1 and k2 = 1. For k1 = k2 = 1
the forcing term is taken such that ∂û1

∂t
= 0∀t and Fk1k2 ≡ 0 for k1, k2 > 1.

Furthermore

Ck1k2(û, v̂, ∂xj) =
kc1∑

p1=1
p1+q1=k1

kc2∑

p2=1
p2+q2=k2

ûp1p2ipj v̂q1q2 j = 1, 2 , (54)
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where kc1 and kc2 are the cut-off wavenumbers of the numerical solution. All interactions
between modes ûp1p2 and ûq1q2 with pj + qj = kj and pj = 1, . . . , kcj

for j = 1, 2 are
captured in this term.

One of the difficulties that arose is the following: suppose k1 < p1 ≤ kc1 for a certain
value of k1. Then by definition q1 < 0. This implies that in computing at time t + 1,
ut+1(k1, k2), we need ut(p1, p2) and ut(q1, q2) at the old time step t. If q < 0 in one
dimension we would take the complex conjugate of −q, since

u(−q)∗ ⇒ (e−iqk)∗ = eiqk ⇒ u(q) , (55)

where ∗ denotes the complex conjugate operation.
In two dimensions however if we take the complex conjugate of a fourier component,
we get:

u(−q1, q2)
∗ ⇒ (e−iq1x1eiq2x2)∗ = eiq1x1e−iq2x2 ⇒ u(q1,−q2) (56)

If both q1 and q2 are negative this suffices, since in that case for q2 we can also use −q2.
If however q1 is negative and q2 positive, we have to correct the left-hand side of Eq.
(56) by e2iq2k2 to compensate for the complex conjugate being taken over the product
of both components:

u(−q1, q2)
∗ ⇒ e2iq2x2(e−iq1x1e−iq2x2)∗ = e2iq2eiq1x1e−iq2x2 = eiq1x1eiq1x1 ⇒ u(q1, q2) (57)

If q1 is positive and q2 negative an analogues correction has to be applied.

5.2 Results

In this section we will discuss the results which have been obtained solving the 2D
Burgers’ equation. At first a comparison is made between the 1D and 2D energy
spectra for verification and finally a more in depth analysis of 2D energy spectra for
various situations are displayed and discussed.

5.2.1 Results: comparison between 1D and 2D energy spectrum

As has been mentioned in the introduction of this section, we will first compare the
1D energy to the 2D energy to see whether we can obtain the same results with our
2D program as with our 1D program. In order to do so, we have set the parameters as
follows kc1 = 0, kc2 = 20, t = 4 and δt = 0.001. In the following figure the diamonds are
the values computed using the 1D program and the solid line is the solution computed
by the 2D program.
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Figure 26: Comparison between the energy spectrum of the 1D and 2D steady-
state solution of Burger’s equation for kc1 = 0 and kc2 = 20 and δt = 0.001.

From these figures and the underlying data it can be concluded that the 2D program
with computed in one dimension yields the same results as the 1D program, as expected.
We will now look at several two dimensional problems where kc1 = kc2 > 0.

5.2.2 Results: 2D energy spectrum in depth

The next step is to compute the 2D program in two dimensions for different parameters
and take a look at the energy spectrum. For the energy spectrum we will look at the
energy per wavenumber instead of the energy per mode. Note that in one dimension
these two are the same. The energy at a wavenumber k̃i for i = 0, . . . , k1 + k2 − 1 is
defined by:

e(k̃i) =
∑

k1+k2=k̃i

e(k1) + e(k2) (58)

We have computed the energy spectrum for Re = 2, kc1 = kc2 = 10, δt = 0.001. We
have also tried to compute the energy spectrum for Re = 4, kc1 = kc2 = 20, δt = 0.0005.
At the end of my research we found out that the 2D program had an error and therefore
I aborted the computation of the energy spectrum for the latter set of parameters. From
this we also have to conclude that the energy spectrum of the first set of parameters is
not exactly the energy of the 2D burgers equation. We will now first show the figure
and then discuss the error in the program.
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Figure 27: Energy spectrum for the steady-state solution of the 2D Burgers’
equation for Re = 2, kc1 = kc2 = 10 and δt = 0.001.

We can see from the energy spectrum shown in Figure 27 that the energy is distrubeted
amongst all wavenumbers. However we have also tried to compute different solutions
for different parameters. For several of these sets of parameters we expected the energy
spectrum to show something similar to the energy spectrum shown in Figure 27. These
simulations of these energy spectra however were unstable and the solutions “blew up”.

The error can be found in an errorneus implementation of the correction we proposed in
Eq. (57). The correction has to applied in physical space, hence an inverse Fourier trans-
formation has to be applied to the velocity in spectral space to compute the velocity
in physical space. In physical space the correction has to be applied in the appropriate
direction. Finally the velocity has to be transformed again to spectral space using a
Fourier transformation.
In our case we have applied the correction to the velocity in spectral space. But since
the velocity in spectral space is the sum of velocities in physical space, the wrong pre-
multiplication is made. We are now essentially applying some kind of filtering without
knowing exactly what it is we are filtering with.
In some cases this might lead to a stable solution, however, the solution is not correct.
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5.3 Conclusion

Our 2D program is not able to correctly simulate energy spectra for different sets of
parameters, due to an error. We have explained the error and have shown that in
some cases the program can still produce stable solutions. The fact that the 2D can
accurately simulate a 1D problem, lies within the fact that whilst computing the 1D
problem the correction does not have to be applied. In the 1D problem q1 will not be
negative while q2 is positive and vise versa.
Due to the fact we have not been able to compute a solution on a denser grid, we have
not been able to look at convergence or give an impression of how well the 2D program
works.
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6 Conclusion

In this paper we have looked in several different ways at Burgers’ equation. In the
first part we have looked at four different Direct Numerical Simulation methods which
we used to numerically solve Burgers’ equation in one dimension. We have looked at
two Lagrangian methods, second and fourth order, and we have looked at two Spectro-
Consistent methods, also second and fourth order. One might think that the Lagrangian
methods are better due to the way they are constructed, however we have shown that
these methods can be instable and should therefore not be used.

On the other hand the Spectro-Sonsistent methods are always stable and preserve con-
tinuous proprties like the conservation of energy and mass. From this we can conclude
that for solving Burgers’ equation in physical space one of the Spectro-Consistent meth-
ods should be used.
By the addition of time turbulence was introduced. We have shown that due to the
presence of turbulence the DNS methods require the computation of small scales in
order to be able to generate an accurate solution. This requires the use of dense grids.
In order to find out whether we can accurately compute larger scales without having
to compute small scales, we have applied filtering.
At first we have to tried to apply a filter based on the iterative Gauss-Seidel method.
Using this method, filtering is applied to an entire vector. While applying this filter,
no structured improvements have been observed, neither in speed or in accuracy.
The next stage for us was to look at Burgers’ equation in spectral space and by applying
a different kind of filter. in spectral space we have applied a filter, a cosine, which in
physical space coincides with a local three or five point filter. In computing the velocity
at a certain point in space, the values of two or four neighbouring points are also taken
into account.
Aplying this filter leads to satisfactory results. Not only are we able to restrain the
production of subgrid scales, this method also shows a pattern for different types of
problems. This pattern could be used in further research in order to obtain a filtercri-
terium which can be included in physical space. This could lead to the use of coarser
grids whilst still accurately preserving energy at larger scales of motion.

Finally we have extended the problem to two dimensions. The difficulty in spectral
lies in the proper handling of the non-linear convective term. The non-linearity leads
to a correction which has to be applied. We have suggested a correction, however we
have implemented this correction incorrectly in our program. We have discussed this
and have concluded that in some cases our program still was able to produce stable
energy spectra. However in several cases where we expected stable energy spectra, the
program produced unstable solutions. Due to the fact that I ran out of time, I haven’t
been able to implemet a correct program and therefore I haven’t been able to properly
compare multiple 2D simulations.
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All in all I think that a correct implementation of the 2D will lead to similar results as
the 1D program. If it is possible to implement the filter in the same manner as in the
1D program, I feel it is possible to actually restrain the production of subgrid-scales
also in two and three dimension. I will gladly leave this challenge for future research.
I am glad that in the end I have continued my research. It has taken a couple of years
and I am glad I have finally been able to come up with a paper. Again I would like to
thank Roel Verstappen and Joop Helder for assisting me in the final, most straining
part of my study.
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