Performance analysis of the CORS and BiCOR iterative methods for solving nonsymmetric sparse linear systems

Bachelor Thesis in Applied Mathematics

August 2011

Student: S. Baars

Supervisor: Dr. B. Carpentieri

Abstract

Recently, the iterative methods BiCOR and CORS for solving real nonsymmetric (or complex non-Hermitian), and possibly indefinite sparse linear systems were developed. There is not much known yet about the performance of those methods. We consider iterative methods in general, and go more into detail about CORS and BiCOR. We analyse the performance of BiCOR and CORS by comparing them to seven popular solvers on a large set of publicly available matrices coming from different areas of application. We use different qualities of preconditioners to do this. In our experiments we observe that CORS is a highly competitive solver compared to other popular solvers, like GMRES and BiCGSTAB.

Keywords: CORS, BiCOR, GMRES, BiCGSTAB; iterative methods, Krylov subspace methods; performance profiles; preconditioning.

Contents

1	Intr	roduction	1
2	Kry	vlov subspace methods	1
	2.1	The Krylov subspace	1
	2.2	Arnoldi's method	2
	2.3	Different approaches	4
	2.4	The GMRES method	5
	2.5	Preconditioning	5
3	The	e Petrov-Galerkin projection	6
	3.1	The basics	6
	3.2	The two-sided biconjugate A-orthonormalisation method	8
	3.3	The biconjugate A-orthonormalisation procedure for solving general linear systems	10
4	The	e BiCOR method	12
5	The	e CORS method	13
6	Cor	nputational aspects	14
	6.1	Preconditioning	14
	6.2	Stopping criteria	15
	6.3	Implementational aspects	16
7	Nui	merical experiments	17
	7.1	Information about the experiments	17
	7.2	Data analysis	18
	7.3	Results	18
		7.3.1 Speed	20
		7.3.2 Reliability	21

8	Con	clusio	n	23
9	Ack	nowled	dgments	23
\mathbf{A}	Pro	blems		28
	A.1	Proble	em types	28
		A.1.1	Problems with 2D/3D geometry	28
		A.1.2	Problems that normally do not have 2D/3D geometry	28
	A.2	Proble	em list	28
В	Imp	lemen	tation of BiCOR	31
	B.1	User d	locumentation	31
		B.1.1	Argument lists and calling sequence	31
			B.1.1.1 Initialization of the control parameters	31
			B.1.1.2 Solving Ax=b	31
		B.1.2	Control parameters	33
		B.1.3	Error values	34
		B.1.4	General information	35
	B.2	Impler	mentation	35
\mathbf{C}	Imp	lemen	tation of CORS	39
	C.1	User d	locumentation	39
		C.1.1	Argument lists and calling sequence	39
			C.1.1.1 Initialization of the control parameters	39
			C.1.1.2 Solving Ax=b	39
		C.1.2	Control parameters	41
		C.1.3	Error values	42
		C.1.4	General information	42
	C.2	Impler	mentation	42
D	Imp	lemen	tation of the testing application	46
${f E}$	Imp	lemen	tation of the data analysis tool	56

1 Introduction

Computational simulation of scientific and engineering problems often involves solving large systems of equations of the form

$$Ax = b, (1.1)$$

with $A \in \mathbb{C}^{m \times n}$, $x \in \mathbb{C}^n$ and $b \in \mathbb{C}^n$. The usual way of solving small systems of linear equations of the form (1.1) is by using Gaussian elimination. Gaussian elimination, however, as well as other direct methods, has a cost of $\mathcal{O}(n^3)[33]$. This is really expensive if the order n of the matrix A is large and also unnecessarily expensive if the matrix is sparse, i.e. it contains many zero entries. If the matrix is sparse, not only the computational cost is expensive, but also the storage cost in the memory. For direct methods it is usually still needed to store n^2 entries in the memory, where one would like to only store the $\mathcal{O}(n)$ nonzero entries in the matrix. In this case it might be useful to use an iterative method, and a Krylov subspace method in particular.

Developing those methods is a continuously evolving subject of research. Recently, a new family of iterative methods were developed around the two-sided A-orthonormalisation procedure that will be introduced in this thesis. To date, very little is known about the performance of those methods. We test the performance of two of those methods, BiCOR and CORS, and compared those with some other popular iterative methods. We do this mostly using various qualities of preconditioners. To compare BiCOR and CORS to the other iterative methods, we used a FORTRAN implementation, that we also provide here.

As an introduction to the subject, we discuss iterative methods, also called Krylov methods, mostly following Van der Vorst in [40]. Then we show how the BiCOR and CORS method can be derived from the two-sided A-orthonormalisation procedure following [8], and finally, we analyse the results of our experiments.

2 Krylov subspace methods

2.1 The Krylov subspace

The general idea behind iterative methods is that we want to solve the system Ax = b, and at each iteration i, we have an approximate solution x_i . We can also write this as $x = x_i + \epsilon_i$ where ϵ_i is the error at step i. Multiplication by A gives us

$$A\epsilon_i = A(x - x_i) = b - Ax_i.$$

Since we do not have the real solution, we do not know the actual error either. Instead we try to solve the system

$$Mz_i = b - Ax_i$$

for z_i , with M an approximation of A that makes the system easier to solve. If we take $x_0 = 0$ for instance, the first step would be solving $Mz_0 = b$. Since M is an approximation of A, z_i is an approximation of the error. Thus solving the easier system leads to a better approximation of the solution: $x_{i+1} = x_i + z_i$. The basic iteration introduced here, now leads to

$$x_{i+1} = x_i + M^{-1}(b - Ax_i),$$

where M is called the preconditioner. One uses a preconditioner to speed up convergence. An iterative method converges fast when $M^{-1}A$ is close to identity. If $M^{-1}A$ was equal to identity,

we would have convergence in one step. We only write the inverse of M for notational purposes. In practice, M^{-1} is usually not calculated. For more information about preconditioners, see section 2.5.

If we now take M = I, we obtain the well known Richardson iteration [40]

$$x_{i+1} = b + (I - A)x_i = x_i + r_i,$$

with $r_i = b - Ax_i$ the residual at step i. We try to find a relation between r_{i+1} and r_i by multiplying the above relation by -A and adding b to it

$$b - Ax_{i+1} = b - Ax_i - Ar_i$$

SO

$$r_{i+1} = (I - A)r_i = (I - A)^{i+1}r_0.$$

It then follows that the approximate solution x_{i+1} may be written as

$$x_{i+1} = r_0 + r_1 + \ldots + r_i = \sum_{k=0}^{i} (I - A)^k r_0$$

for $x_0 = 0$. We can do this without loss of generality, because in case x_0 is nonzero, we could just shift the system by setting $Ay = b - Ax_0 = \hat{b}$ with $y_0 = 0$. We now observe that

$$x_{i+1} \in \text{Span} \{r_0, Ar_0, \dots, A^i r_0\} \equiv \mathcal{K}_{i+1}(A; r_0).$$

The space of dimension m, spanned by a given vector v, and increasing powers of A applied to v up to the (m-1)th power of A is called the m-dimensional Krylov subspace generated by A and v, and is denoted as $\mathcal{K}_m(A;v)$ [13, 40].

2.2 Arnoldi's method

Assuming the matrix A has n eigenvalues $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_n| \ge 0$, and linearly independent eigenvectors $\{v_1, v_2, ..., v_n\}$ with $Av_i = \lambda_i v_i$, we may write the solution x to the system Ax = b as

$$x = \sum_{j=1}^{n} \alpha_j v_j.$$

Multiplying both sides by A^k gives

$$A^k x = \sum_{j=1}^n \alpha_j A^k v_j = \sum_{j=1}^n \alpha_j \lambda_j^k v_j.$$

If we factor out λ_1^k from the right hand side

$$A^k x = \lambda_1^k \sum_{j=1}^n \alpha_j \frac{\lambda_j^k}{\lambda_1^k} v_j$$

we see that, since $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \ge 0$, this converges to

$$A^k x = \lambda_1^k \alpha_1 v_1$$

as $k \to \infty$ and assuming that $\alpha_1 \neq 0$ [7]. This only holds because $|\lambda_1|$ has to be strictly greater than $|\lambda_2|$. Otherwise we would not able to factor out the eigenvectors belonging to λ_2 to λ_n . This is the idea behind the basic iteration for finding eigenpairs (θ_m, v_m) through the Power Method.

Something we observe, is that the obvious basis $\{r_0, Ar_0, \ldots, A^{m-1}r_0\}$ for the Krylov subspace $\mathcal{K}_m(A; r_0)$ is not very attractive. The vectors $A^j r_0$ point more and more in the direction of the dominant eigenvector for increasing j. Hence, the basis vectors will become linearly dependent in finite precision arithmetic. This is why we want to make sure that we have an orthogonal basis for our Krylov subspace [40].

A way to form an orthogonal basis for the Krylov subspace is suggested by Arnoldi [1]. Arnoldi's method often uses modified Gram-Schmidt orthogonalisation in the process of finding this basis. Modified Gram-Schmidt orthogonalisation is used, because normal Gram-Schmidt orthogonalisation can produce linearly dependent vectors due to rounding errors. We first describe this process before describing Arnoldi's method itself.

In the modified Gram-Schmidt process [31], we start with the vector

$$q_1 = \frac{1}{\|x_1\|} x_1,$$

where x_1, \ldots, x_n form an ordinary basis. Now, at the beginning of the (k+1)-th step, the projections of the vector x_{k+1} along the vectors q_i, \ldots, q_k are progressively subtracted from x_{k+1} . We can write the first step of the subtraction within the (k+1)-th step of the process itself as

$$x_{k+1}^{(1)} = x_{k+1} - q_1^T x_{k+1} q_1.$$

This new vector $x_{k+1}^{(1)}$ is then projected along q_2 and subtracted again from $x_{k+1}^{(1)}$, yielding

$$x_{k+1}^{(2)} = x_{k+1}^{(1)} - q_2^T x_{k+1}^{(1)} q_2.$$

We can continue this process until $x_{k+1}^{(k)}$ is computed. q_{k+1} is then given as

$$q_{k+1} = \frac{1}{\|x_{k+1}^{(k)}\|} x_{k+1}^{(k)}.$$

We can now describe the procedure of Arnoldi's method as follows. We start with $v_1 = r_0/\|r_0\|_2$. Then we compute Av_1 , make it orthogonal to v_1 , and normalise the result using the modified Gram Schmidt process described above. This gives us v_2 . In general, we have an orthonormal basis $v_1, \ldots v_j$ for our Krylov subspace $\mathcal{K}_j(A; r_0)$. We expand this basis by calculating $t = Av_j$ and orthonormalising this vector t with respect to the basis v_1, \ldots, v_j . This leads to an algorithm as seen in Algorithm 1 to form a basis v_1, \ldots, v_m for $\mathcal{K}_m(A; r_0)$. The orthogonalisation can be done in different ways, but the most common way is to use the modified Gram-Schmidt process [33, 40].

We clearly see here that the matrix A is only accessed through matrix-vector products, which is an advantage compares to direct methods, where the matrix is used directly. This allows us to specify our own matrix-vector product if we store the matrix for example in a sparse format.

Now let V_j denotes the matrix that has columns v_1, \ldots, v_j . We then see from Arnoldi's method that

$$AV_{m-1} = V_m H_{m,m-1} (2.1)$$

Algorithm 1 Arnoldi's method using modified Gram-Schmidt orthogonalisation.

```
1: v_1 = r_0/\|r_0\|_2

2: \mathbf{for} \ j = 1, 2, \dots, m-1 \ \mathbf{do}

3: t = Av_j

4: \mathbf{for} \ i = 1, \dots, j \ \mathbf{do}

5: h_{i,j} = v_i^T t

6: t = t - h_{i,j} v_i

7: \mathbf{end} \ \mathbf{for}

8: h_{j+1,j} = ||t||_2

9: v_{j+1} = t/h_{j+1,j}

10: \mathbf{end} \ \mathbf{for}
```

where $H_{m,m-1}$ is an upper Hessenberg matrix, which means that $h_{i,j} = 0$ for i > j + 1. The other entries of $H_{m,m-1}$ are defined by Arnoldi's method. We see that the orthogonalisation becomes increasingly expensive for increasing dimension of the subspace, since every iteration needs one extra inner product and vector update compared to the last iteration to compute a new column of $H_{m,m-1}$.

If A is symmetric however, so is $H_{m-1,m-1} = V_{m-1}^T A V_{m-1}$. Therefore, in this case, $H_{m-1,m-1}$ is tridiagonal. This means that during the orthogonalisation process, most inner products vanish, so the work does not increase. The resulting three-term recurrence relation is known as the Lanczos method [29] that has some well known methods derived from it. The constant amount of work that has to be done during every iteration in the Lanczos method is one matrix vector product, two inner products and two vector updates.

2.3 Different approaches

Methods that attempt to generate an approximate solution from the Krylov subspace, like Arnoldi's method, are usually referred to as Krylov subspace methods. There are four classes of Krylov subspace methods that can be distinguished:

- The Ritz-Galerkin approach: Require for x_k that the residual is orthogonal to the current subspace: $b Ax_k \perp \mathcal{K}_k(A; r_0)$.
- The minimum norm residual approach: Require for x_k that the Euclidean norm $||b-Ax_k||_2$ is minimal over $\mathcal{K}_k(A; r_0)$.
- The *Petrov-Galerkin approach*: Require for x_k that the residual $b Ax_k$ is orthogonal to some other suitable k-dimensional subspace.
- The minimum norm error approach: Require for x_k in $A^T \mathcal{K}_k(A^T; r_0)$ that the Euclidean norm $||x_k x||_2$ is minimal.

The Ritz-Galerkin approach leads to methods such as the Lanczos method mentioned before and the Conjugate Gradient (CG) method [21]. The minimum norm residual approach leads to methods such as the Generalised Minimum Residual (GMRES) method [36]. The minimum norm error approach leads to some less well known methods that will not be discussed in this paper. And lastly, the Petrov-Galerkin approach leads to methods such as the Biconjugate Gradient (BiCG) method [15], the Quasi-Minimal Residual (QMR) method [18], and the Biconjugate A-Orthogonal Residual (BiCOR) [25] method we discuss later in this thesis. Other methods like the Conjugate Gradients Squared (CGS) [38], Biconjugate Gradient Stabilised (BiCGSTAB) [39] and BiCGSTAB(ℓ) [37] methods and the Conjugate A-Orthogonal Residual Squared (CORS) method [25] we discuss later, are hybrids of the different approaches.

2.4 The GMRES method

The GMRES method can be derived using the minimum residual approach. It is an optimal method, in the sense that it minimizes the 2-norm of the residual over the corresponding Krylov space. Starting from Arnoldi's method, in (2.1), we had an orthogonal basis for the Krylov subspace of dimension i + 1, leading to

$$AV_i = V_{i+1}H_{i+1,i}.$$

We are looking for an $x_i \in \mathcal{K}_i(A; r_0)$, such that the residual, $||b - Ax_i||_2$, is minimal. Since $x_i \in \mathcal{K}_i(A; r_0)$, we can also write $x_i = V_i y$. The norm of the residual can be rewritten as

$$||r_i||_2 = ||b - Ax_i||_2 = ||b - AV_iy||_2 = ||\beta V_{i+1}e_1 - V_{i+1}H_{i+1,i}y||_2,$$

with $\beta \equiv ||r_0||_2$. Now, since the column vectors of V_{i+1} are orthonormal, we have

$$||b - Ax_i||_2 = ||\beta e_1 - H_{i+1,i}y||_2,$$

which can be solved as a least squares problem. This least squares problem can be solved by making the QR-factorisation of $H_{i+1,i}$, and because of the upper Hessenberg structure, this can be done efficiently using Givens matrices. Givens matrices are elementary rotation matrices of thee form $G(i, k, \theta) = I - Y$, where I is the identity matrix and Y is a null matrix except for the elements $y_{ii} = y_{kk} = 1 - \cos(\theta)$ and $y_{ik} = -y_{ki} = -\sin(\theta)$. The Givens rotations remove the subdiagonal elements from the upper Hessenberg matrix $H_{i+1,i}$, resulting in an upper triangular matrix $R_{i,i}$:

$$H_{i+1,i} = Q_{i+1,i}R_{i,i}$$

where $Q_{i+1,i}$ is the matrix consisting of the product of successive Givens rotations. Now we can write the least squares problem as the minimisation of

$$\|\beta e_1 - H_{i+1,i}y\|_2 = \|\beta e_1 - Q_{i+1,i}R_{i,i}y\|_2$$
$$= \|Q_{i+1,i}^T\beta e_1 - R_{i,i}y\|_2.$$

This leads to the minimum norm solution

$$y = R_{i,i}^{-1} Q_{i+1,i}^T \beta e_1,$$

where the approximate solution x_i is computed as $x_i = V_i y$.

To lower the storage and computational costs of the orthogonalisation process, GMRES is usually restarted after m steps. This method is referred to as $\mathrm{GMRES}(m)$. By restarting GMRES, we lose the optimality property however. The non-restarted version of GMRES is also referred to as full GMRES.

2.5 Preconditioning

In general, all iterative methods we mentioned before converge rapidly if the matrix A of the problem Ax = b from (1.1) is close to identity. If the matrix is equal to the identity matrix, those methods converge in one step. For most problems however, the matrix A is far from being close to identity, and therefore one can not be sure that the iterative methods will compute a good approximation of the solution in $m \ll n$ iterations. Every different method has its own drawbacks. In exact arithmetic, some methods, like full GMRES, lead to the exact solution in

at most n steps, but that might not be very practical. Other methods, like CG, only work for certain kinds of matrices. In the case of CG, the matrix must be symmetric positive definite. There are also methods, like BiCG, BiCGSTAB and the methods discussed in this thesis, CORS and BiCOR, that might suffer from breakdowns or stagnation. The rate of convergence depends in a very complicated way on the spectral properties (eigenvalue distribution, etc.) of the matrix A and in real applications, this information is not available [40].

The trick is to use a preconditioner. A preconditioner $M \approx A$ tries to get the original problem closer to identity, so the spectral properties are better. In general, one can write

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$

where M_1 is the left preconditioner, and M_2 is the right preconditioner with $x = M_2^{-1}y$. If we choose, for example $M_1 = A$ and $M_2 = I$, the problem is solved in one step. Note that if we precondition from the right, the residual stays the same as the residual of the original system, because

$$r = b - A\hat{x} = b - AM_2^{-1}y, (2.2)$$

where \hat{x} is the approximate solution.

Calculating the inverse is usually very expensive, so instead of calculating the exact inverse, one can also try to approximate it. Tools to derive those preconditioners are even more diverse than those used in the derivation of iterative methods [20], and therefore we do not discuss this here.

3 The Petrov-Galerkin projection

3.1 The basics

For nonsymmetric matrices, it is desirable to have a three-term recurrence relation similar to the one from the Lanczos method. Due to the work of Faber and Manteuffel, we know that for nonsymmetric matrices, it is not possible to find short-term recurrence relations while keeping the optimality property as for the GMRES method [14]. To reduce memory usage and computational costs, however, it is still very useful to derive non-optimal methods. Let's start with what we already know from Arnoldi's method. This suggested a basis

$$h_{i+1,i}v_{i+1} = Av_i - \sum_{j=1}^{i} h_{j,i}v_j$$
(3.1)

for the Krylov subspace, which could be written as

$$V_{i+1}H_{i+1,i} = AV_i (3.2)$$

in matrix notation. Using V_i for the projection, we would end up making the new vector orthogonal to Krylov subspace like we would do in the Ritz-Galerkin approach, but that's not what we want here. So suppose that we have W_i for which $W_i^T V_i = D_i$ with D_i a diagonal matrix, and for which v_{i+1} is orthogonal to W_i , so $W_i^T v_{i+1} = 0$. Then

$$W_i^T A V_i = D_i H_{i,i}. (3.3)$$

Our goal is to find a W_i such that $H_{i,i}$ is tridiagonal. In this case we would have a three-term recurrence relation. So from the above statement we see that $(W_i^T A V_i)^T = V_i^T A^T W_i$ should

also be tridiagonal. This looks very similar to what we have in (3.3), so this suggests we can write a relation similar to (3.1), but now with W_i .

Let's choose an arbitrary $w_1 \neq 0$ with $w_1^T v_1 \neq 0$. Then we can use (3.1) to generate v_2 and orthogonalise it with respect to w_1 . So then from (3.3) we see that $h_{1,1} = w_1^T A v_1 / (w_1^T v_1)$. Since

$$v_1^T h_{1,1} w_1 = v_1^T (w_1^T A v_1) w_1 / (w_1^T v_1)$$

= $(w_1^T A v_1) v_1^T w_1 / (w_1^T v_1)$
= $w_1^T A v_1 = v_1^T A^T w_1$,

we see that w_2 generated from

$$h_{2,1}w_2 = A^T w_1 - h_{1,1}w_1 (3.4)$$

is also orthogonal to v_1 . That is,

$$v_1^T w_2 = \frac{1}{h_{2,1}} \left(v_1^T A^T w_1 - v_1^T h_{1,1} w_1 \right) = \frac{1}{h_{2,1}} \left(v_1^T A^T w_1 - v_1^T A^T w_1 \right) = 0.$$

Relation (3.4) indeed looks similar to (3.1).

We can go on with this, and see that we can create bi-orthogonal basis sets $\{v_j\}$ and $\{w_j\}$ by making every new v_{i+1} orthogonal to w_1, \ldots, w_i , and then generating w_{i+1} using the same coefficients, but with A^T instead of A.

Now we have that both $W_i^T A V_i = D_i H_{i,i}$ and $V_i^T A^T W_i = D_i H_{i,i}$. This implies that $D_i H_{i,i}$ is symmetric, and hence our Hessenberg matrix $H_{i,i}$ is tridiagonal. This gives us the three-term recurrence relation we wanted with v_1, \ldots, v_i a basis for $\mathcal{K}_i(A; v_1)$ and w_1, \ldots, w_i a basis for $\mathcal{K}_i(A^T; w_1)$. The matrix $H_{i,i}$ is also commonly denoted as $T_{i,i}$ due to its tridiagonal form. The three-term recurrence relation we found does not only save a lot of computational power, but also requires less memory. We only have to store the last three vectors of both of the bases.

The two-sided Lanczos method [30] follows from what we derived above. Since we have a tridiagonal matrix, we can write v_{i+1} and w_{i+1} at step i in the construction of the dual basis as

$$\delta_i v_{i+1} = A v_i - \alpha v_i - \beta_{i-1} v_{i-1}$$

and

$$\delta_i w_{i+1} = A^T w_i - \alpha_i w_i - \beta_{i-1} w_{i-1}.$$

Algorithm 2 The two-sided Lanczos method.

```
1: Choose a v_1 and w_1 such that w_1^T v_1 = \gamma_1 \neq 0

2: \beta_0 = 0, w_0 = v_0 = 0

3: for j = 1, 2, ... do

4: p = Av_i - \beta_{i-1}v_{i-1}

5: \alpha_i = w_i^T p/\gamma_i

6: p = p - \alpha_i v_i

7: \delta_{i+1} = ||p||_2

8: v_{i+1} = p/\delta_{i+1}

9: w_{i+1} = (A^T w_i - \beta_{i-1} w_{i-1} - \alpha_i w_i)/\delta_{i+1}

10: \gamma_{i+1} = w_{i+1}^T v_{i+1}

11: \beta_i = \delta_{i+1} \gamma_{i+1}/\gamma_i

12: end for
```

So here we have $\delta_i = h_{i+1,i}$, $\alpha_i = h_{i,i}$, and $\beta_i = h_{i-1,i}$ where available. The full method is given in Algorithm 2. In this algorithm we also use $\gamma_i = w_i^T v_i$. The only thing we do here is repeatedly calculating v_{i+1} and w_{i+1} using exactly what we derived above.

The method we described above can also be seen as an oblique projection of the residual onto the space orthogonal to the space spanned by W, which is exactly what our initial condition $r_k \perp \mathcal{K}_m(A^T, w_1)$ says. With an oblique projection we mean the projection of a vector, onto a space \mathcal{K} orthogonal to a space \mathcal{L}^{\perp} . We also say the projection is along \mathcal{L} onto \mathcal{K} [35, 6]. Put in another way, oblique projections are projections that are not orthogonal. Orthogonal projections actually project onto the orthogonal space.

Figure 1: 2D interpretation of the Petrov-Galerkin projection

In the case of the Petrov-Galerkin projection, we are projecting the residual along AW onto the space orthogonal to the space spanned by W, as can be seen in Figure 1. In this figure, the purple line resembles the projection. The image was created for a 2×2 matrix, using the two-sides Lanczos method to construct the bases V and W. We chose $v_1 = r_0/||r_o||_2$ and $w_1 = r_0$. After computing V and W, we applied the prototype projection method suggested by Saad in [35]. The prototype projection method can be found in Algorithm 3

Algorithm 3 Prototype projection method

```
1: for i=1,2,\ldots, until convergence do

2: Select a pair of subspaces \mathcal{K} and \mathcal{L}

3: Choose bases V=[v_1,\ldots,v_i] and W=[w_1,\ldots,w_i] for \mathcal{K} and \mathcal{L}

4: r_i=b-Ax_i

5: y=(W^TAV)^{-1}W^Tr_i

6: x_{i+1}=x_i+Vy

7: end for
```

3.2 The two-sided biconjugate A-orthonormalisation method

The two-sided biconjugate A-orthonormalisation method [25] is a method similar to the two-sided Lanczos method, and can, like the two-sided Lanczos method, be used for nonsymmetric matrices. Given two vectors v_1 and w_1 for which $w_1^T A v_1 = 1$, we define two Lanczos-type vectors v_j and w_j very similar to the ones we described in the last section. We again use scalars

 α_j, β_j and δ_j . The two vectors are recursively defined as

$$\delta_{j+1}v_{j+1} = Av_j - \beta_j v_{j-1} - \alpha_j v_j, \tag{3.5}$$

$$\beta_{j+1} w_{j+1} = A^T w_j - \delta_j w_{j-1} - \alpha_j w_j \tag{3.6}$$

where the scalars are chosen as

$$\alpha_j = w_j^T A^2 v_j, \quad \beta_j = w_{j-1}^T A^2 v_j, \quad \delta_j = w_j^T A^2 v_{j-1}.$$

The choice of the scalars assures that the vectors v_j and w_j form a biconjugate A-orthonormal basis. So $w_i^T A v_j = \delta_{i,j}$, with $\delta_{i,j}$ the Kronecker delta. The rest of the procedure can be derived from the two-sided Lanczos algorithm. For the sake of clarity, we show a complete version of the process in Algorithm 4.

Algorithm 4 The biconjugate A-orthonormalisation procedure.

```
1: Choose a v_1 and w_1 such that w_1^T A v_1 = 1

2: \beta_0 = \delta_1 = 0, w_0 = v_0 = 0

3: for j = 1, 2, ... do

4: \alpha_j = w_j^T A (A v_j))

5: \tilde{v}_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1}

6: \tilde{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1}

7: \delta_{j+1} = |\tilde{w}_{j+1}^T A \tilde{v}_{j+1}|^{\frac{1}{2}}

8: \beta_{j+1} = \frac{\tilde{w}_{j+1}^T A \tilde{v}_{j+1}}{\delta_{j+1}}

9: v_{j+1} = \frac{\tilde{v}_{j+1}}{\delta_{j+1}}

10: w_{j+1} = \frac{\tilde{w}_{j+1}}{\beta_{j+1}}

11: end for
```

The fact that the basis sets $\{v_j\}$ and $\{w_j\}$, generated from relations (3.5) and (3.6), really form a basis of the Krylov subspaces $\mathcal{K}_i(A; v_1)$ and $\mathcal{K}_i(A^T; w_1)$ can be shown in a similar way as we did for the two-sided Lanczos method, and can be found for example in [25]. Additionally, the following relations hold

$$AV_m = V_{m+1} T_{m+1,m}, (3.7)$$

$$A^T W_m = W_{m+1} T_{m,m+1}^T, (3.8)$$

$$W_m^T A V_m = I_m, (3.9)$$

$$W_m^T A^2 V_m = T_m, (3.10)$$

with

$$T_m = \begin{pmatrix} \alpha_1 & \beta_2 \\ \delta_2 & \alpha_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ & & \delta_{m-1} & \alpha_{m-1} & \beta_m \\ & & & \delta_m & \alpha_m \end{pmatrix}$$

and
$$V_m = [v_1, v_2, \dots, v_m], W_m = [w_1, w_2, \dots, w_m].$$

Due to the three-term recurrence relation like the one in the two-sided Lanczos method, we can overwrite for example w_{j-1} with w_{j+1} . After all, we see in Algorithm 4, line 6, that w_{j-1} is not used after \tilde{w}_{j+1} has been computed. An advantage of the three-term recurrence relation is that storage is very limited if you compare it to Arnoldi's method.

The method can possible fail if δ_{j+1} vanishes while \tilde{w}_{j+1} and $A\tilde{v}_{j+1}$ are not the zero vector. One could try to recover from such failures using so-called look-ahead strategies [32] as used in for instance the QMR implementation we use for this thesis.

3.3 The biconjugate A-orthonormalisation procedure for solving general linear systems

As one can derive for instance the Biconjugate Gradient method from the two-sided Lanczos method, one can also derive methods for solving Ax = b from the Biconjugate A-Orthonormalisation procedure by applying a Petrov-Galerkin projection. We will describe this process in three steps

Step 1 Run Algorithm 4 for $m \ll n$ steps and generate V_m , W_m and T_m as described above.

Step 2 Compute the approximate solution x_m that belongs to the Krylov subspace $x_0 + \mathcal{K}_m(A; v_1)$ by using the Petrov-Galerkin projection to project the residual orthogonally to the space $A^T \mathcal{K}_m(A^T; w_1)$, so

$$r_m = b - Ax_m \perp A^T \mathcal{K}_m(A^T; w_1). \tag{3.11}$$

Using matrix notation, we may also write

$$(A^T W_m)^T (b - Ax_m) = 0$$

and since our approximate solution is of the form

$$x_m = x_0 + V_m y_m \tag{3.12}$$

we get, using (3.10)

$$(A^{T}W_{m})^{T}(b - A(x_{0} + V_{m}y_{m})) = (A^{T}W_{m})^{T}r_{0} - (A^{T}W_{m})^{T}V_{m}y_{m}$$
$$= W_{m}^{T}Ar_{0} - T_{m}y_{m} = 0$$

so, if we have $v_1 = r_0/||r_0||_2$,

$$T_m y_m = ||r_0||_2 e_1 \tag{3.13}$$

with e_1 the first canonical unit vector.

Step 3 Compute the new residual, and terminate if it meets the stopping criterion. Otherwise, enlarge the Krylov subspace and start again.

By using this method, we not only solve the system Ax = b, but also implicitly the system $A^Tx' = b'$. We use the notation used in [8] by denoting vectors belonging to this dual system with primed symbols. We can now say we compute the approximation x'_m that belongs to the Krylov subspace $x'_0 + \mathcal{K}_m(A^T; w_1)$, so we get a relation similar to (3.11)

$$r'_m = b' - A^T x'_m \perp A \mathcal{K}_m(A; v_1).$$

We also get similar relations as above, but now for the dual system

$$(AV_m)^T (b' - A^T x_m') = 0, (3.14)$$

$$x_m' = x_0' + W_m y_m', (3.15)$$

$$T_m^T y_m' = ||r_0'|| e_1. (3.16)$$

We can now update x_m and x'_m from x_{m-1} respectively x'_{m-1} . Assume the LU factorisation of the tridiagonal matrix T_m is

$$L_m U_m = T_m$$
.

Substituting this expression in (3.12), (3.13) and (3.15), (3.16), we get

$$x_{m} = x_{0} + V_{m}(L_{m}U_{m})^{-1}(\|r_{0}\|_{2}e_{1})$$

$$= x_{0} + V_{m}U_{m}^{-1}L_{m}^{-1}(\|r_{0}\|_{2}e_{1})$$

$$= x_{0} + P_{m}z_{m}$$

$$x'_{m} = x'_{0} + W_{m}(U_{m}^{T}L_{m}^{T})^{-1}(\|r_{0}\|_{2}e_{1})$$

$$= x'_{0} + W_{m}(L_{m}^{T})^{-1}(U_{m}^{T})^{-1}(\|r_{0}\|_{2}e_{1})$$

$$= x'_{0} + P'_{m}z'_{m}$$

where we take $P_m = V_m U_m^{-1}$, $z_m = L_m^{-1}(\|r_0\|_2 e_1)$, $P_m' = W_m (L_m^T)^{-1}$ and $z_m' = (U_m^T)^{-1}(\|r_0'\|_2 e_1)$. Because of the structure of U_m , which only has a nonzero diagonal and superdiagonal, we can easily calculate the elements of P_m . We see that $u_{m-1,m}p_{m-1} + u_{m,m}p_m = v_m$, where p_m and v_m are the last column of P_m and V_m respectively, and $u_{i,j}$ is the i,jth element of U_m . Now it follows that

$$p_m = \frac{1}{u_{m,m}} (v_m - u_{m-1,m} p_{m-1}) p.$$
(3.17)

In addition, because of the structure of L_m , which only has a nonzero diagonal (consisting of only ones) and subdiagonal, we find

$$z_m = (z_{m-1}, \zeta_m)^T$$

in which $\zeta_m = l_{m,m-1}\zeta_{m-1}$, where $l_{i,j}$ is the i,jth element of L_m . If we now substitute this back in the relation $x_m = x_0 + P_m z_m$ found above, we get

$$x_m = x_0 + [P_{m-1}, p_m] \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix} = x_0 + P_{m-1} z_{m-1} + \zeta_m p_m.$$

Noting that $x_0 + P_{m-1}z_{m-1} = x_{m-1}$, we finally find

$$x_m = x_{m-1} + \zeta_m p_m. (3.18)$$

If we repeat those steps for the dual system, we find a similar relation

$$x'_{m} = x'_{m-1} + \zeta'_{m} p'_{m}. (3.19)$$

This is the same derivation as used for IOM and DIOM in [35].

We now state two propositions that we will use in the derivation in the next section.

Proposition 3.1. The pairs of the primary and dual direction vectors p_i and p'_j form a A^2 -orthonormal set, i.e. $p'_i^T A^2 p_j = \delta_{i,j}$.

Proof.

$$(P'_m)^T A^2 P_m = (W_m (L_m^T)^{-1})^T A^2 V_m U_m^{-1}$$

$$= L_m^{-1} W_m^T A^2 V_m U_m^{-1}$$

$$= L_m^{-1} T_m U_m^{-1} \quad \text{(using (3.9))}$$

$$= L_m^{-1} L_m U_m U_m^{-1}$$

$$= I$$

Proposition 3.2. The pairs of the primary and dual residual vectors r_i and r'_j form a A-orthonormal set, i.e. $r_i^T A r_j = 0$ for $i \neq j$.

Proof. Combining (3.7) and (3.12)-(3.13), we get

$$r_{m} = b - Ar_{m}$$

$$= b - Ax_{0} - AV_{m}y_{m}$$

$$= r_{0} - V_{m}T_{m}y_{m} - \delta_{m+1}v_{m+1}e_{m}^{T}y_{m}$$

$$= r_{0} - r_{0} - \delta_{m+1}v_{m+1}e_{m}^{T}y_{m}$$

$$= -\delta_{m+1}v_{m+1}e_{m}^{T}y_{m}.$$

In a similar way, we get for the dual system, using (3.8) and (3.15)-(3.16),

$$r'_{m} = -\beta_{m+1} w_{m+1} e_{m}^{T} y'_{m}.$$

Combining the above two relations with (3.9), we now find that $r_i^T A r_j = 0$ for $i \neq j$.

4 The BiCOR method

We can now proceed in a similar way as the derivation of the Conjugate Gradient method. For the derivation of CG, see for example [40, 20]. Given an initial guess x_0 , we get the coupled two-term recurrences

$$r_0 = b - Ax_0, \quad p_0 = r_0, \tag{4.1}$$

$$x_{j+1} = x_j + \alpha_j p_j, \tag{4.2}$$

$$r_{j+1} = r_j - \alpha_j A p_j, \tag{4.3}$$

$$p_{j+1} = r_{j+1} + \beta_j p_j,$$
 for $j = 0, 1, \dots$ (4.4)

where $r_j = b - Ax_j$ is the residual at iteration j and p_j is the search direction vector at iteration j as in (3.17). Here the vectors p_j are multiples of the vectors p_j as seen in 3.3. It's important to note that α_j and β_j are different from the α_j and β_j used in the previous section (3.2). This is done for consistency with the notation used in the derivation of other methods. The coupled two-term recurrences for the dual system are defined in a similar way:

$$r'_{j+1} = r'_j - \alpha_j A^T p'_j, (4.5)$$

$$p'_{j+1} = r'_{j+1} + \beta_j p'_j,$$
 for $j = 0, 1, \dots$ (4.6)

The parameters α_i and β_i can be determined from the orthogonality relations

$$r_{j+1} \perp \mathcal{L}_m$$
 and $Ap_{j+1} \perp \mathcal{L}_m$

as found in section 3.2. Using propositions 3.1 and 3.2, we find the subspace $A^T \mathcal{K}_m(A^T; r'_0)$ to be suitable, where $r'_0 = P(A)r_0$ with P(t) an arbitrary polynomial in variable t. A common choice is $r'_0 = r_0$, but here we will use $r'_0 = Ar_0$. If instead of $A^T \mathcal{K}_m(A^T; r'_0)$ we choose for instance $\mathcal{K}_m(A; r_0)$, we get the CG method [21]. Further derivation using (4.1)-(4.6) gives us the following expressions for α_j and β_j . For the full derivation see for example [28].

$$\alpha_j = \frac{r_j^{\prime T} A r_j}{p_j^{\prime T} A^2 p_j} \tag{4.7}$$

$$\beta_j = \frac{r_{j+1}^{\prime T} A r_{j+1}}{r_j^{\prime T} A r_j}.$$
 (4.8)

Now, combining (4.1)-(4.8), we finally get the Biconjugate Biconjugate A-Orthogonal Residual method, or simply BiCOR [25, 28, 27, 8, 9]. The complete algorithm can be found in Algorithm 5. In the algorithm, we use the following notations: the dual vectors have a primed symbol, preconditioned vectors have a prefixed z, and a hat symbol is used for matrix-vector products.

Algorithm 5 Left preconditioned BiCOR method.

```
1: Compute r_0 = b - Ax_0 for some initial guess x_0.
 2: Choose r'_0 = P(A)r_0 such that \langle r'_0, Ar_0 \rangle \neq 0, where P(t) is a polynomial in t. (For example, r'_0 = Ar_0).
 3: for j = 1, 2, \dots do
           solve Mzr_{j-1} = r_{j-1}
 4:
           if j=1 then
 5:
               solve M^T z r'_0 = r'_0
 6:
 7:
           end if
           \widehat{zr} = Azr_{i-1}
 8:
 9:
           \rho_{j-1} = \left\langle zr'_{j-1}, \widehat{zr} \right\rangle
10:
           if \rho_{j-1} = 0, method fails
11:
           if j = 1 then
12:
               p_0 = zr_0
13:
                p_0' = zr_0'
14:
15:
16:
               \beta_{j-2} = \rho_{j-1}/\ \rho_{j-2}
              p_{j-1} = zr_{j-1} + \beta_{j-2} p_{j-2}
p'_{j-1} = zr'_{j-1} + \beta_{j-2} p'_{j-2}
q_{j-1} = \widehat{zr} + \beta_{j-2} q_{j-2}
17:
18:
19:
20:
           \widehat{q}'_{j-1} = A^T p'_{j-1}
solve M^T \widehat{z} q'_{j-1} = \widehat{q}'_{j-1}
21:
22:
           \alpha_{j-1} = \rho_{j-1} / \langle \widehat{z} q'_{j-1}, q_{j-1} \rangle
23:
24:
           x_j = x_{j-1} + \alpha_{j-1} p_{j-1}

\begin{aligned}
r_j &= r_{j-1} - \alpha_{j-1} \ q_{j-1} \\
zr'_j &= zr'_{j-1} - \alpha_{j-1} \ \hat{z}q'_{j-1}
\end{aligned}

25:
26:
27:
            check convergence; continue if necessary
28: end for
```

5 The CORS method

Using the same strategy used when deriving the CGS method from the BiCG method, see for example [40], we can derive a transpose-free variant of the BiCOR method, the Conjugate A-Orthogonal Residual Squared method (CORS) [25, 28, 27, 8, 9].

In the previous section, we could have written the representations of the vectors r_j, p_j, r'_j, p'_j at step j as the polynomial representations

$$r_j = \phi_j(A)r_0,$$
 $p_j = \psi_j(A)r_0,$
 $r'_i = \phi_j(A^T)r'_0,$ $p'_i = \psi_j(A^T)r'_0,$

where ϕ_j and ψ_j are Lanczos-type polynomials of degree less than or equal to j satisfying $\psi_j(0) = 1$. Substituting back in (4.7) and (4.8) gives us

$$\alpha_{j} = \frac{r_{j}^{\prime T} A r_{j}}{p_{j}^{\prime T} A^{2} p_{j}} = \frac{r_{0}^{\prime T} A \phi_{j}^{2}(A) r_{0}}{r_{0}^{\prime T} A^{2} \psi_{j}^{2}(A) r_{0}}$$
$$\beta_{j} = \frac{r_{j+1}^{\prime T} A r_{j+1}}{r_{j}^{\prime T} A r_{j}} = \frac{r_{0}^{\prime T} A \phi_{j+1}^{2}(A) r_{0}}{r_{0}^{\prime T} A \phi_{j}^{2}(A) r_{0}}.$$

Also note that from (4.3) and (4.4) ϕ_i and ψ_i can be expressed recursively as

$$\phi_{j+1}(t) = \phi_j(t) - \alpha_j t \psi_j(t),$$

$$\psi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \psi_j(t).$$

Using the strategy mentioned above, we now get the CORS algorithm, as described in Algorithm 6.

Algorithm 6 Left preconditioned CORS method.

```
1: Compute r_0 = b - Ax_0 for some initial guess x_0.
 2: Choose r'_0 = P(A)r_0 such that \langle r'_0, Ar_0 \rangle \neq 0, where P(t) is a polynomial in t. (For example, r'_0 = Ar_0).
 3: for j = 1, 2, \dots do
         solve Mzr_{i-1} = r_{i-1}
         \widehat{zr} = Azr_{i-1}
 6:
         \rho_{j-1} = \langle r_0', \widehat{zr} \rangle
         if \rho_{j-1} = 0, method fails
 7:
         if j = 1 then
 8:
 9:
              e_0 = r_0
10.
              solve Mze_0 = e_0
11:
              d_0 = \widehat{zr}
12:
              q_0 = \hat{zr}
13:
          else
14:
              \beta_{j-2} = \rho_{j-1} / \rho_{j-2}
15:
              e_{j-1} = r_{j-1} + \beta_{j-2} \ h_{j-2}
16:
              ze_{j-1} = zr_{j-1} + \beta_{j-2} f_{j-2}
17:
              d_{j-1} = \widehat{zr} + \beta_{j-2} \ g_{j-2}
18:
              q_{j-1} = d_{j-1} + \beta_{j-2} \left( g_{j-2} + \beta_{j-2} q_{j-2} \right)
19:
          end if
          solve Mzq = q_{j-1}
20:
          \widehat{zq} = Azq
21:
22:
          \alpha_{j-1} = \rho_{j-1} / \langle r_0', \widehat{zq} \rangle
23:
          h_{j-1} = e_{j-1} - \alpha_{j-1} \ q_{j-1}
          f_{j-1} = ze_{j-1} - \alpha_{j-1} \ zq
24:
25:
          g_{j-1} = d_{j-1} - \alpha_{j-1} \ \widehat{zq}
          x_j = x_{j-1} + \alpha_{j-1} (2ze_{j-1} - \alpha_{j-1}zq)
27:
          r_i = r_{i-1} - \alpha_{i-1} \left( 2d_{i-1} - \alpha_{i-1} \ \widehat{zq} \right)
28:
          check convergence; continue if necessary
29: end for
```

From our experiments, we find that CORS is highly competitive to all other popular algorithms (see section 7). However, like the CGS method, it is based on squaring the residual, which might result in a substantial buildup of rounding errors and worse approximate solutions, or possibly even overflow. This also means that CORS might in general need more time to complete a calculation than other methods, if they both succeed.

6 Computational aspects

6.1 Preconditioning

In our experiments, we use preconditioners constructed by ILUPACK [5]. The algorithms of ILUPACK compute an incomplete LU-factorisation A = LDU + E. Here L is a lower triangular matrix with unit diagonal, D is a diagonal matrix and U is an upper triangular matrix with unit diagonal. LDU is an approximation of the standard LU-factorisation that can be used as a preconditioner. Furthermore $||E|| < \tau$ where τ is the drop tolerance. The matrices L, D and

U are easily implicitly computed. In the case of ILUPACK, the diagonal matrix is not a real diagonal matrix. ILUPACK computes

$$\tilde{P}^T A \tilde{Q} = \begin{pmatrix} B & F \\ E & C \end{pmatrix} \approx \begin{pmatrix} L_B & 0 \\ L_E & I \end{pmatrix} \begin{pmatrix} D_B & 0 \\ 0 & S_C \end{pmatrix} \begin{pmatrix} U_B & U_F \\ 0 & I \end{pmatrix}$$

and then uses the inverse

$$(\tilde{P}^T A \tilde{Q})^{-1} = \begin{pmatrix} B & F \\ E & C \end{pmatrix}^{-1} \approx \begin{pmatrix} \tilde{B}^{-1} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \tilde{B}^{-1} F \\ I \end{pmatrix} S_C^{-1} \left(-E \tilde{B}^{-1} & I \right)$$

where $\tilde{B} = L_B D_B U_B$ [4].

6.2 Stopping criteria

An iterative method will never provide an exact solution with a zero residual, r = b - Ax = 0, unless of course b is equal to zero. For this reason, we have to choose a good stopping criterion that we can use in all the different solvers we use for testing. A really small relative error ||x - y||/||x|| with respect to the approximate solution y is usually enough, but this can not always be achieved. Also, since we do not have the actual solution, we can not explicitly calculate the relative error. Therefore, our stopping criterion will be based on the backward error analysis introduced by Wilkinson [41].

A calculated solution \hat{x} of a system Ax = b can be seen as the (exact) solution of the perturbed problem

$$(A + \delta A)\hat{x} = (b + \delta b).$$

The so called backward error measures the distance between the data of the original system and the perturbed system. The uncertainties in the data can either be due to measurements, or due to accumulation or propagation of roundoff errors [22]. If the backward error is not larger than those uncertainties, we may assume that the approximation is accurate. Componentwise perturbations and normwise perturbations can be used to calculate backward error. These lead to explicit formulas to calculate the backward error. It is generally accepted that for iterative methods, the use of normwise perturbations is appropriate [17]. We use this strategy to stop our solvers.

At iteration j of an iterative method, we compute an approximation x_j of the actual solution $x = A^{-1}b$. We can see x_j as the solution of the perturbed problem $(A+\delta A)x_j = (b+\delta b)$. We introduce

$$\eta_{j} = \min \{ \epsilon > 0 : (A + \delta A)x_{j} = (b + \delta b), \|\delta A\|_{2} \le \epsilon \alpha, \|\delta b\|_{2} \le \epsilon \beta \}
= \frac{\|b - Ax_{j}\|_{2}}{\alpha \|x_{j}\|_{2} + \beta}$$

as the normwise backward error [22]. When the machine precision has been reached by our method, the method does not converge any further, so at best, the backward error is as small as the machine precision. In the testing application, we stop when $\eta \leq 10^{-10}$.

Common choices for α and β are, respectively, $||A||_2$ and $||b||_2$. In this case, η_j is called the normwise relative backward error [22]. For the sake of simplicity, however, we have chosen to use $\alpha = 0$ and $\beta = ||b||_2$ in the testing application.

Value Meaning	
-1 An error occu	rred
1 Convergence h	has been achieved or the user may check for convergence
2 The user must	t perform a matrix-vector product
3 The user must	t perform the preconditioning operation

Table 2: Return values of IACT for our CORS implementation

6.3 Implementational aspects

Implementations of iterative methods basically require vector updates, scalar products and matrix-vector products. The first two are standard routines that are implemented in the BLAS library, but for the matrix-vector products, the user might want to provide their own implementations. This is mainly because matrices can be stored in various ways. Sometimes matrices are not even stored explicitly, but only as a subroutines. The same holds for preconditioners. ILUPACK for example does not provide an explicit matrix to use for preconditioning.

We could just let the user implement matrix-vector products in the code themselves, but that is not very user-friendly. For this reason, we allow the user to specify their own matrix-vector products and preconditioning operations, using reverse communication [12]. Reverse communication is commonly used in FORTRAN implementations of iterative methods, for example in the Harwell Subroutine Library (HSL) [23]. Here we explain how it works.

In the call to the iterative method, several variables are provided. One of those is the reverse communication variable. Once you call the function for the first time, it has to have a certain value, so the method knows it's the first time you call it. In our case the variable is IACT and this default value is zero. Other values of the reverse communication variable tell you to perform for instance a matrix-vector product, a preconditioning operation, or they tell you that an error occurred or convergence has been achieved. See for an example of the values of IACT Table 2.

Once the user is told to perform for example a matrix-vector product, other variables are used to tell the user which vectors in the array to use. In our case those variables are LOCY and LOCZ. Meaning the location of y and z coming from the assignment y = Az. So one reads from the LOCZ-th vector and writes to the LOCY-th vector. Once the user performed the operation he is supposed to perform, the same subroutine is called again with the same argument. This process is repeated until convergence is observed by either the user or the algorithm itself, depending on whether the user wants to check or not.

The reverse communication method is overall very fast, because no memory has to be allocated during any of the operations. The user only has to perform a certain operation. It's also very user friendly, because the user can use any implementation of a matrix-vector product, preconditioning operation, or convergence check.

A different way to implement this in FORTRAN would be allowing the user to pass a function or subroutine to the subroutine that is then called by the subroutine itself, but this limits the user to passing only subroutines or functions that require a set amount of variables, whereas the user probably wants to pass more variables. A way to do this in object oriented languages, like C++, is by overloading operators.

7 Numerical experiments

7.1 Information about the experiments

In our experiments, we consider a collection of various matrices available from the University of Florida Sparse Matrix Collection from Tim Davis [10]. The matrices we used are a reasonable representation of all nonsymmetric and real matrices available in the collection, covering every field of research in the collection. To analyse the performance of BiCOR and CORS, we compared them to the popular methods BiCG, BiCGSTAB, CGS, GMRES, BiCGSTAB(ℓ), QMR and TFQMR. For GMRES we used a value of restart equal to 100. This reduced the memory needed to run the solver on the largest problems. We chose the value $\ell=3$ for BiCGSTAB(ℓ), because this yielded the best results.

We implemented the BICOR and CORS methods in FORTRAN 77 by ourselves. For BiCG, BiCGSTAB, CGS and GMRES we used implementations from the Harwell Subroutine Library (HSL) [23]. The implementation of BiCGSTAB(ℓ) was obtained from Van der Vorst's website, [16] and the implementations of QMR and TFQMR came from QMRPACK [19].

The tests were run on a PC equipped with an AMD AthlonTM 7850 Dual-Core Processor running at 2,8 GHz and 4GB 800 MHz DDR2-RAM. Our code was compiled with the GNU FORTRAN compiler (gfortran) version 4.5.2 that came with Ubuntu 11.04. The implementations of all the solvers we tested were in FORTRAN 77, the testing application calling those implementations was in FORTRAN 2003 to allow us to keep running the application without having to restart for every other preconditioner or matrix. This needed memory allocation and making sure the results were saved on the local disk required flushing the file after every solver completed.

To read the matrices from our hard-drive, we downloaded the matrices in MatrixMarket format [3]. To store our matrices in the main memory, we used the compressed sparse row format. We used SPARSKIT [34] to convert the matrices from the coordinate format used in the MatrixMarket script to the compressed sparse row format. The matrix-vector product and transpose matrix-vector product were performed by AMUX and ATMUX in SPARSKIT. The preconditioning operation was performed by ILUPACK. Those libraries, as well as the implementations of all the different solvers, needed a BLAS implementation, for which we used the ACML library optimised for AMD processors.

The data we gathered from running the different solvers included the amount of time it took to solve a problem, the amount of matrix-vector products, and, if a solver did not complete, the reason why. We ran every solver six times if it completed the first time to be able to get rid of any flaws caused by processes running in the background. To minimise this effect, no applications were started other than the default startup applications, excluding Ubuntu One, and including Dropbox to make sure results were not lost, a terminal, and nautilus. During the process, the CPU was monitored to make sure nothing interfered with the testing application. As a result, the testing application ran at 99%-100% of one core essentially all of the time.

To make a better selection of the matrices to test, we excluded matrices that completed faster than 0.05 seconds, because the results we got from the CPU_TIME routine were only accurate to up to 2 decimals. Additionally, we excluded those matrices of which the problems took too long to solve, i.e. took more than 20000 matrix-vector operations, for none of the iterative solvers using the best preconditioner. The reason we stopped at 20000 matrix-vector products is that for the bigger problems it would take five days or more to get up to n iterations for any solver. This would mean that we would be done maybe two years from now. The reason we excluded the problems that failed to complete for every solver was so we did not have to

rerun them for worse preconditioners.

We also checked if a result of a given solver on a given problem was much different from the average of the other runs with the same solver on the same problem. If it was more than 10% off, it was excluded from the results. This rarely ever happened.

7.2 Data analysis

To analyse the data we gathered from running the testing application, we make use of performance profiles of the computation time and the amount of matrix-vector products as suggested by Dolan and Moré in [11]. In the performance profiles, we can see what solver is most likely to solve a certain problem after a certain amount of time or with a certain amount of matrix-vector products compared to the other solvers. The best solver for every matrix gets a value of one associated with them, and the other solvers get a value greater than one, that is the ratio between this solver and the best solver. So the performance ratio of a solver s on a problem p is given by

$$r_{p,s} = \frac{t_{p,s}}{\min_s t_{p,s}}$$

and the cumulative distribution function for the performance ratio is given by

$$\rho_s(\tau) = \frac{1}{n_p} \text{size}\{p : r_{p,s} \le \tau\}$$

where n_p is the total amount of problems we tested. So at $\tau = \tau_1$, a certain solver s has a probability $\rho_s(\tau_1)$ of solving a problem at a ratio τ_1 worse than the fastest solver. $\rho(1)$, is of particular interest, because we can see there how many times a solver was the best.

If a solver does not solve a problem, the ratio r_M is assigned. This ratio should be higher than the highest ratio found for any solver on any problem that did not fail. In this way, the solver will still have a value assigned for the certain problem where it failed, but we simply will not plot for $\tau \geq r_M$. So we will see the solver that solved the most problems overall on top when we look at the far right of the plot.

7.3 Results

We ran our preliminary tests with three different preconditioners constructed with drop tolerances of 0.1, 1.0 and 10.0 on a total of more than 100 matrices, but ended up with only 72 matrices that satisfied our criteria. We solved the linear system using preconditioning from the right. This means that we solved the system $AM_2^{-1}y = b$ with our solution $x = M_2^{-1}y$. From (2.2), we see that we did not have to adjust our stopping criterion to work on the preconditioned system. If we would have used preconditioning from the left, in a real implementation one would have had to adjust every solver to have a stopping criterion based on the preconditioned system. We could, however, in reverse communication just replace the matrix-vector products with a preconditioning operation and a matrix-vector product, and the preconditioning operation with a vector copy.

The time it took to complete the experiments with 9 solvers on 72 matrices was over 120 hours. We analyse the results in the next sections.

Figure 2: Performance profiles with a tolerance of 0.1

Figure 3: Performance profiles with a tolerance of 1.0

Figure 4: Performance profiles with a tolerance of 10.0

7.3.1 Speed

As one can see in Figures 2-4, our tests revealed that GMRES and BiCGSTAB were in general the fastest solvers. In terms of matrix-vector products, GMRES was of course the fastest, because it uses only one matrix-vector product per iteration, where the other methods use two. In terms of time however, GMRES became better compared to the other solvers for better preconditioners. For the preconditioner constructed with a tolerance of 0.1, GMRES had 35 wins where BiCGSTAB had 24, with a tolerance of 1.0, they both had 19 wins, and with a tolerance of 10, BiCGSTAB had 19 wins and GMRES 15. Because GMRES got worse for sparser preconditioners. This also meant that the other solvers got relatively more wins.

Here it must be noted that we used a restart value of 100 for GMRES, but for really large problems, where memory use is an issue, we would not be able to use such a high value for the restart. In such a case, it would be more fair to have a value of restart that makes the memory use of GMRES similar to that of the other methods. We tried this, but this gave such bad results (worse than TFQMR), that we decided to use a value of 100.

If we do not only look at the winners, but at a slightly bigger region of interest, say $\tau \leq 2$, we see that CORS, BiCGSTAB, GMRES and CGS are the most competitive solvers. For the best preconditioner, the one with a drop tolerance of 0.1, CORS is even on top after $\tau \approx 1.7$ (see Figure 5).

We also see that CORS is considerably faster in terms of matrix-vector products (see Figures 2-4). It performs a bit worse in terms of time is mainly due to the amount of scalar times a vector plus a different vector operations, or simply Scalar A X Plus Y (SAXPY) operations. Those are the most expensive operations done in the algorithms themselves. CORS uses 12 of such per iteration where BiCOR for example only uses 6.

We now classify the solvers according to the information we gathered about the different problems, see Appendix A.2. In this case, we excluded solvers like QMR and TFQMR from this analysis, because they performed very badly. We also only name the solvers where we saw something notable. First, we see that the bigger the problem, the better CORS and BiCGSTAB perform and the worse GMRES performs. This is mainly of interest, because one tends to use iterative methods only for bigger problems. For smaller problems one could as well just use direct methods.

Figure 5: Performance profile with a tolerance of 0.1 on a smaller region: Ratio of CPU time

Solver	breakdown	iterations	NAN
CORS	1	2	0
BiCOR	11	3	0
BiCGSTAB	7	0	0
BiCG	5	2	0
CGS	0	7	0
GMRES(100)	0	12	0
BiCGSTAB(3)	0	8	2
QMR	0	13	0
TFQMR	0	25	0

Table 4: Failures with a perconditioner tolerance of 0.1

We also investigated if the percentage of pattern symmetry and value symmetry mattered. Here we see that GMRES performs better for the highly nonsymmetric problems, and CORS and BiCGSTAB for the more symmetric problems. We also noted that for diagonal dominant matrices, BiCGSTAB was better and GMRES worse.

Now we get to the kind of problems. Here we see that GMRES performed better for economic, and semiconductor device problems. BiCGSTAB performed better for circuit simulation, computational fluid dynamics, and semiconductor device problems. We also saw that CORS performed considerably well on circuit simulation problems, and that BiCOR and BiCG were very efficient for the electromagnetics problems.

7.3.2 Reliability

If we look at a region of large values of τ in the performance profiles in Figure 2, we find that CORS ends up solving 4 more problems that the two next best solvers, BiCG and CGS. For this preconditioner, CORS only fails to solve three problems. CORS also ends up being on top for the preconditioner constructed with a tolerance of 1.0. For the preconditioner constructed with a tolerance of 10, we see that BiCGSTAB(ℓ) ends up on top. CORS is the second best solver, and it's performance comes very close to BiCGSTAB(ℓ) if we look at values of τ greater than 20, but this is not shown in the performance profiles. If we look at the other preconditioner tolerances, we see that BiCGSTAB(ℓ) does not even come close to the performance of CORS.

We're now interested in what happens when CORS fails, since it's the solver that has the least amount of failures. We find that for the preconditioner constructed with a tolerance of 0.1, CORS exceeds the maximum amount of iterations twice, and breaks down once. A breakdown in the implementations of CORS, BiCOR, BiCGSTAB, CGS and BiCG means that $|\rho_{j-1}| < un$ and $|\rho_{j-1}| < u||r_{j-1}||_2||r'_{j-1}||_2$ where n is the size of the problem, u is the machine precision and the other variables as in Algorithm 5. This is as it is adopted in the HSL. The GMRES method, being an optimal method, can not break down, so for GMRES, we do not see any breakdowns. BiCGSTAB(ℓ) returned quite a lot of not-a-number answers, which might be due to the breakdown implementation which is different from that the HSL.

So let's look at the only case where CORS broke down for the best tolerance we tested. This was on the torsol matrix. For this matrix, we find that not only CORS, but also BiCGSTAB broke down, BiCOR and BiCG converged, and the others exceeded the maximum amount of allowed iterations. If we look at the convergence history of the 2-norm of the residual of CORS, BiCOR, BiCGSTAB, BiCG, CGS and GMRES, we see that for BiCOR and BiCG the residual

started reducing at a nice rate after about 200 iterations. For GMRES, the residual stayed constant after about 80 iterations, and for CGS the residual heavily fluctuated somewhere above 10⁵. The residual of BICGSTAB suddenly increased after about 300 iterations and the method broke down after doing a few more steps. CORS at first showed about the same behaviour as CGS, then fluctuated less heavily, but did still not converge, and after that, CORS broke down.

The two matrices where CORS took too many iterations were the cryg10000 and invextr1_new matrices. For the first one, CORS did not seem to converge at all, but for the last one, CORS converged at steady rate, but unfortunately not fast enough to complete within the set maximum amount of iterations, as can be seen in Figure 6(a). What we can also see in this figure is the relatively wild behaviour of CGS due to the squaring of the residual, and the behaviour of GMRES, which usually converges steadily, but in this case not at all. What we can conclude, is that CORS is able to solve most problems, and therefore is the most robust method for this preconditioner.

In Figure 6(b), we again see that here CGS is a lot wilder than CORS, which seems to be the usual behaviour. This is probably the reason why CORS is more stable than CGS, while they are based on the same ideas. In this figure we also see the breakdown of BiCGSTAB. The method first behaves like other solvers, but then sees a sudden increase in the residual after which the residual stays the same and then the method breaks down. This is the standard behaviour we observed for this method and other methods.

The default drop tolerance used by ILUPACK is 0.01 instead of the 0.1 we used as lowest tolerance. We did this mainly to make sure the solvers did not complete too quickly, and so we could find out which solver was most robust. The construction of the preconditioner for the bigger problems only took a small amount of time compared to solving the problem itself, so it would be reasonable to use a better preconditioner. So we ran some more tests. We tried several better preconditioners on the matrices that failed for all methods for the preconditioner with a drop tolerance of 0.1. In those tests, CORS again turned out to be the most reliable method in every test. Some other solvers were able to compete with CORS in some tests, but CORS was the only one that turned out to be the most reliable in every single test.

If we look at BiCOR we see that a lot of breakdowns occur. We checked that in all cases the value of ρ was indeed smaller than the machine precision. Two new methods, BiCOR Stabilised (BiCORSTAB) [28] and Composite Step BiCOR (CSBiCOR) [26], have already been developed to prevent those failures. We however did not have a chance to test those methods.

Figure 6: Convergence history of the relative residual on two problems

The last question we tried to answer was how the distribution of the eigenvalues of the preconditioned matrix affected convergence. If the preconditioner is good, then AM^{-1} is close to identity, so we may expect that most of the eigenvalues are close to one. We calculated the eigenvalues of the 20 smallest matrices, but it was not possible to draw any conclusions.

Figure 7: Typical distribution of eigenvalues, in this case of the powersim matrix.

8 Conclusion

When we started comparing CORS and BiCOR to other iterative methods, we had no idea whether they were competitive or not. In our experiments we found that BiCOR broke down many times, and therefore is not very attractive for solving realistic applications. We also found that the BiCGSTAB method and GMRES method with sufficiently large restart, are the most popular methods in use today for a reason: they turned out to be the fastest methods. In terms of stability however, CORS proves to be the best. It might not be as fast, mostly due to the larger amount of SAXPY operations, but reliability comes with a cost. We also see this when we compare for example $BiCGSTAB(\ell)$ to normal BiCGSTAB, which is generally a lot faster than $BiCGSTAB(\ell)$.

The most interesting case when using iterative methods is a large problem with a good preconditioner. Bigger problems are more vulnerable to the performance of the methods, simply because they take longer to solve. Also, because ILUPACK constructs the preconditioners quite fast, with an amount of nonzeros of the order of the problem itself, one most likely wants to use a better preconditioner. We found CORS to excel in both cases: it was better for better preconditioners, and also faster for bigger problems in comparison with other solvers.

We conclude that the CORS method turns out to be a valuable addition to the long list of iterative methods already available.

9 Acknowledgments

I would really like to thank Bruno Carpentieri for all his support and help during every step of the process and for developing BiCOR and CORS in the first place to make this research possible. My thanks also go to Matthias Bollhöfer (Institute of "Computational Mathematics",

Technische Universität Braunschweig, Germany) for his support in the usage of the ILUPACK software. And finally, I would like to thank Sjoerd Meesters, Paulus Meessen and Jeroen Lanting for thoroughly reading the manuscript and giving advice on how to improve it, and Diederik Perdok, who read the manuscript with no knowledge of numerical mathematics in general, but still gave really good comments.

References

- [1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics, 9:17–29, 1951.
- [2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1993. Obtainable from research.att.com:/netlib/linalg_using_ftp.
- [3] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra. Matrix market: A web resource for test matrix collections. In *The Quality of Numerical Software: Assessment and Enhancement*, pages 125–137. Chapman & Hall, 1997.
- [4] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from inverse–based ILUs. 27(5):1627–1650, 2006.
- [5] M. Bollhöfer, Y. Saad, and O. Schenk. ILUPACK preconditioning software package, June 2011. http://ilupack.tu-bs.de/. Release 2.4.
- [6] C. Brezinski and L. Wuytack. Projection methods for systems of equations. North Holland, 1997.
- [7] R. L. Burden and J. D. Faires. Numerical Analysis. Thompson, 8 edition, 2005.
- [8] B. Carpentieri, Y.-F. Jing, and T.-Z. Huang. The BiCOR and CORS algorithms for solving nonsymmetric linear systems. *SIAM J. Scientific Computing*, 2011. In press.
- [9] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, W.-C. Pi, and X.-Q. Sheng. A novel family of iterative solvers for Method of Moments discretizations of Maxwells equations. In L. Gürel, editor, *CEM'11 Computational Electromagnetics*, pages 85–90. Bilkent University, Computational Electromagnetics Research Center, August 2011.
- [10] T. A. Davis. University of florida sparse matrix collection. Technical report, 1994.
- [11] E. D. Dolan and J. J. More. Benchmarking optimization software with performance profiles. *Math. Programming, Ser. A*, 91:201–212, 2002.
- [12] J. Dongarra, V. Eijkhout, and A. Kalhan. Reverse communication interface for linear algebra templates for iterative methods. Technical Report UT-CS-95-291, May 1995.
- [13] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical linear algebra for high-performance computers, volume 7 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
- [14] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM Journal on Numerical Analysis, 21(2):352–362, Apr. 1984.

- [15] R. Fletcher. Conjugate gradient methods for indefinite systems, volume 506 of Lecture Notes Math., pages 73–89. Springer-Verlag, Berlin, 1976.
- [16] D. R. Fokkema. Bicgstab(ell), full version. http://www.staff.science.uu.nl/vorst102/software.html.
- [17] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. A set of GMRES routines for real and complex arithmetics on high performance computers. *ACM Trans. Math. Softw.*, 31(2):228–238, 2005.
- [18] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear systems. *Numerische Mathematik*, 60:315–340, 1991.
- [19] R. W. Freund and N. M. Nachtigal. QMRPACK: A package of QMR algorithms. ACM Trans. Math. Softw, 22(1):46-77, 1996.
- [20] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.
- [21] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.
- [22] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
- [23] HSL(2011). A collection of fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/.
- [24] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. *The American Mathematical Monthly*, 105(10):889–899, 1998.
- [25] Y.-F. Jing, B. Carpentieri, and T.-Z. Huang. Experiments with Lanczos biconjugate A-orthonormalization methods for MoM discretizations of Maxwell's equations. *Progress In Electromagnetics Research*, PIER 99, pages 427–451, 2009.
- [26] Y.-F. Jing, T.-Z. Huang, B. Carpentieri, and Y. Duan. Investigating the composite step biconjugate A-orthogonal residual method for non-hermitian linear systems in Electromagnetics. In L. Gürel, editor, CEM'11 Computational Electromagnetics, pages 80–84. Bilkent University, Computational Electromagnetics Research Center, August 2011.
- [27] Y.-F. Jing, T.-Z. Huang, Y. Duan, and B. Carpentieri. A comparative study of iterative solutions to linear systems arising in quantum mechanics. *Journal of Computational Physics*, 229:8511–8520, November 2010.
- [28] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, and B. Carpentieri. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. *Journal of Computational Physics*, 228(17):6376–6394, 2009.
- [29] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. *J. Res. Nat. Bur. Standards*, 45:255–282, 1950.
- [30] C. Lanczos. Solution of systems of linear equations by minimized iterations. *J. Res. Natl. Bur. Stand*, 49:33–53, 1952.
- [31] S. J. Leon. *Linear algebra with applications*. Prentice-Hall, pub-PH:adr, seventh edition, 2006.

- [32] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices. *Math. Comp.*, 44:105–124, 1985.
- [33] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer, New York, 2000.
- [34] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations version 2, 1994.
- [35] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
- [36] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 7:856–869, 1986.
- [37] G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(L) for linear equations involving unsymmetric matrices with complex spectrum. *Elect. Trans. Numer. Anal.*, 1:11–32, 1993.
- [38] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 10:36–52, 1989.
- [39] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 13:631–644, 1992.
- [40] H. A. van der Vorst. *Iterative Krylov methods for large linear systems*, volume 13 of *Cambridge Monographs on Applied and Computational Mathematics*. Cambridge University Press, Cambridge, UK, 2003.
- [41] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science No. 32, Her Majesty's Stationery Office, London, 1963. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

Appendices

In the appendices, one can find a description of all problems used, the implementation and documentation of the CORS and BiCOR methods, and the two main programs used in the analysis of the results. In addition to this, two Python modules were written, 5 more Python scripts, and 4 more Fortran applications. Since the appendix would be a lot longer if those were also included, and does not really add any valuable content to the thesis, those were left out.

A Problems

A.1 Problem types

List taken from http://www.cise.ufl.edu/research/sparse/matrices/kind.html

A.1.1 Problems with 2D/3D geometry

- \bullet 2D/3D problem
- acoustics problem
- computational fluid dynamics problem
- computer graphics/vision problem
- electromagnetics problem
- materials problem
- model reduction problem
- robotics problem
- semiconductor device problem
- structural problem
- thermal problem

A.1.2 Problems that normally do not have 2D/3D geometry

- chemical process simulation problem
- circuit simulation problem
- counter-example problem
- economic problem
- frequency-domain circuit simulation problem
- least squares problem
- linear programming problem
- optimization problem
- power network problem
- statistical/mathematical problem
- theoretical/quantum chemistry problem
- combinatorial problem
- graph problems

A.2 Problem list

matrix name	number of rows	nonzeros	nonzero pattern symmetry	numeric value symmetry	row diago- nal domi- nance	column diagonal domi-	kind
			Symmetry	Symmetry	nance	nance	
torso1	116,158	8,516,500	42%	0%	0.00%	0.15%	2D/3D problem
shermanACb	18,510	145,149	15%	3%	38.10%	37.36%	2D/3D problem
av41092	41,092	1,683,902	0%	0%	0.00%	0.00%	2D/3D problem
Baumann	112,211	748,331	100%	0%	16.58%	97.05%	2D/3D problem
heart3	2,339	680,341	100%	0%	0.00%	0.00%	2D/3D problem
chem_master1	40,401	201,201	100%	0%	1.98%	100.00%	2D/3D problem
e40r0100	17,281	553,562	31%	0%	0.14%	0.14%	2D/3D problem
Zd_Jac3	22,835	1,915,726	0%	0%	0.00%	0.00%	chemical process simulation problem
std1_Jac2_db	21,982	498,771	33%	0%	66.96%	54.41%	chemical process simulation problem
memplus	17,758	99,147	100%	50%	75.96%	87.85%	circuit simulation problem
ASIC_320k	321,821	1,931,828	100%	36%	71.29%	71.96%	circuit simulation problem
hcircuit	105,676	513,072	100%	20%	83.19%	84.66%	circuit simulation problem
scircuit	170,998	958,936	100%	80%	97.64%	97.39%	circuit simulation problem
ASIC_680k	682,862	2,638,997	100%	0%	85.46%	94.34%	circuit simulation problem
circuit_3	12,127	48,137	77%	30%	61.21%	63.71%	circuit simulation problem
transient	178,866	961,368	100%	24%	90.18%	90.74%	circuit simulation problem
trans4	116,835	749,800	85%	30%	57.54%	52.20%	circuit simulation problem sequence
lung2	109,460	492,564	57%	0%	49.61%	49.61%	computational fluid dynamics problem
airfoil_2d	14,214	259,688	98%	0%	4.48%	18.01%	computational fluid dynamics problem
atmosmodl	1,489,752	10,319,760	100%	67%	100.00%	100.00%	computational fluid dynamics problem
Ill_Stokes	20,896	191,368	99%	33%	17.67%	17.58%	computational fluid dynamics problem
atmosmodd	1,270,432	8,814,880	100%	67%	100.00%	100.00%	computational fluid dynamics problem
goodwin	7,320	324,772	64%	0%	4.09%	0.17%	computational fluid dynamics problem
poisson3Db	85,623	2,374,949	100%	0%	2.04%	10.50%	computational fluid dynamics problem
invextr1_new	30,412	1,793,881	97%	72%	2.98%	5.29%	computational fluid dynamics problem
GT01R	7,980	430,909	88%	0%	3.72%	4.11%	computational fluid dynamics problem
raefsky1	3,242	293,409	100%	9%	25.87%	25.87%	computational fluid dynamics problem sequence
cage11	39,082	559,722	100%	18%	97.40%	92.67%	directed weighted graph
language	399,130	1,216,334	6%	0%	81.25%	78.62%	directed weighted graph
psmigr_2	3,140	540,022	48%	0%	0.00%	0.00%	economic problem
g7jac160	47,430	564,952	3%	0%	25.94%	28.87%	economic problem
g7jac060	17,730	183,325	4%	0%	25.87%	29.20%	economic problem
mark3jac040	18,289	106,803	7%	1%	23.17%	27.14%	economic problem
jan99jac040	13,694	72,734	0%	0%	29.89%	65.81%	economic problem
mark3jac080sc	36,609	214,643	7%	1%	17.44%	29.55%	economic problem

g7jac140	41,490	488,633	3%	0%	25.95%	28.91%	economic problem
fp	7,548	834,222	76%	0%	3.11%	3.11%	electromagnetics problem
dw8192	8,192	41,746	96%	92%	10.64%	10.64%	electromagnetics problem
utm5940	5,940	83,842	53%	0%	12.82%	15.57%	electromagnetics problem
tmt_unsym	917,825	4,584,801	100%	0%	49.95%	49.96%	electromagnetics problem
viscoplastic2	32,769	381,326	57%	0%	43.94%	8.07%	materials problem
cryg10000	10,000	49,699	100%	0%	54.72%	1.97%	materials problem
inlet	11,730	328,323	61%	0%	3.30%	1.50%	model reduction problem
flowmeter5	9,669	67,391	100%	6%	73.72%	73.62%	model reduction problem
chipcool1	20,082	281,150	100%	9%	4.17%	4.95%	model reduction problem
crashbasis	160,000	1,750,416	55%	0%	49.73%	95.75%	optimization problem
hvdc1	24,842	158,426	98%	10%	5.41%	4.58%	power network problem
powersim	15,838	64,424	59%	53%	36.49%	49.09%	power network problem
TSOPF_RS_b39_c19	38,098	684,206	6%	0%	0.49%	0.49%	power network problem
nmos3	18,588	237,130	100%	17%	18.15%	19.91%	semiconductor device problem
matrix_9	103,430	1,205,518	100%	17%	10.99%	34.87%	semiconductor device problem
matrix-new_3	125,329	893,984	99%	28%	57.78%	62.60%	semiconductor device problem
igbt3	10,938	130,500	100%	17%	25.60%	3.74%	semiconductor device problem
2D_27628_bjtcai	27,628	206,670	100%	22%	43.23%	49.79%	semiconductor device problem
ohne2	181,343	6,869,939	100%	9%	23.86%	2.09%	semiconductor device problem
3D_51448_3D	51,448	537,038	99%	19%	34.34%	44.88%	semiconductor device problem
3D_28984_Tetra	28,984	285,092	99%	36%	47.07%	49.30%	semiconductor device problem
2D_54019_highK	54,019	486,129	100%	19%	31.67%	43.35%	semiconductor device problem
ibm_matrix_2	51,448	537,038	99%	19%	35.72%	44.57%	semiconductor device problem
wang3	26,064	177,168	100%	98%	84.12%	85.09%	semiconductor device problem
sme3Db	29,067	2,081,063	100%	44%	0.00%	0.00%	structural problem
sme3Da	12,504	874,887	100%	44%	0.00%	0.00%	structural problem
t2d_q4	9,801	87,025	100%	69%	74.97%	75.16%	structural problem sequence
venkat50	62,424	1,717,777	100%	6%	0.00%	0.00%	subsequent computational fluid dynamics problem
barrier2-10	115,625	2,158,759	100%	20%	27.31%	4.96%	subsequent semiconductor device problem
para-6	155,924	2,094,873	100%	37%	27.60%	4.02%	subsequent semiconductor device problem
barrier2-4	113,076	2,129,496	100%	19%	25.31%	5.07%	subsequent semiconductor device problem
para-9	155,924	2,094,873	100%	18%	27.71%	4.02%	subsequent semiconductor device problem
epb1	14,734	95,053	73%	0%	52.65%	60.66%	thermal problem
thermomech_dK	204,316	2,846,228	100%	67%	0.00%	0.00%	thermal problem
ted_A	10,605	424,587	57%	11%	0.00%	0.00%	thermal problem
FEM_3D_thermal1	17,880	430,740	100%	95%	0.00%	0.00%	thermal problem

B Implementation of BiCOR

B.1 User documentation

The implementation of the algorithm is based on the methods used in the Harwell Subroutine Library (HSL) [23]. Since the implementation is quite similar, the documentation is also quite similar to the documentation for the various subroutines in the HSL.

B.1.1 Argument lists and calling sequence

B.1.1.1 Initialization of the control parameters

The following subroutines have to be called before using the algorithm with BICORA(D). For single precision we have

```
CALL BICORI (ICNTL, CNTL, ISAVE, RSAVE)
```

and for double precision we have

```
CALL BICORID (ICNTL, CNTL, ISAVE, RSAVE)
```

where

- ICNTL is an INTEGER array of length 8 that does not have to be set by the user. On return, it contains the default values as described in section B.1.2.
- CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does not have to be set by the user. On return, it contains the default values and described in section B.1.2.
- ISAVE is an INTEGER array of length 17 that must not be altered by the user.
- RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must not be altered by the user.

B.1.1.2 Solving Ax=b

Here we will actually solve Ax = b. For single precision we have

```
CALL BICORA (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO, + ISAVE, RSAVE)
```

and for double precision we have

```
CALL BICORAD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO, + ISAVE, RSAVE)
```

where

IACT

is an INTEGER that indicate the action the user has to preform on every return of the BICORA/AD routines. Prior to the first call to BICORA/AD, IACT should be set to 0. Possible values are as follows:

- -1 An error occurred, and the user must terminate the computation. The reason for the error is in INFO(1). See section B.1.3 for more information.
- 1 If ICNTL(4)=0 (the default value), convergence has been achieved, and the user should terminate the computation. If ICNTL(4) is nonzero, the user may test for convergence. If convergence has not been achieved, BICORA/AD should be called again, without changes to its arguments.
- 2 The user must preform the matrix-vector product

$$y = Az$$

and recall BICORA/AD. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z.

3 The user must preform the preconditioning operation

$$y = Mz$$

where M is the preconditioner. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z. Preconditioning is only used when ICNTL(3) is nonzero.

4 The user must preform the transpose matrix-vector product

$$y = A^T z$$

and recall BICORA/AD. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z.

5 The user must preform the transpose preconditioning operation

$$u = M^T z$$

where M is the preconditioner. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z. Preconditioning is only used when ICNTL(3) is nonzero.

Ν

is an INTEGER variable that must be set by the user to the order of the matrix A. The variable must be preserved between calls to BICORA/AD. This argument is not altered by the routine.

W

is a REAL (DOUBLE PRECISION in the D version) two-dimensional array with dimensions (LWD, 8). Prior to the first call to BICORA/AD, the first column must hold the right hand side b. IF ICNTL(5) is nonzero, the second column must contain the initial estimate of the solution x. On exit, the first column holds the residual $r = b - A\hat{x}$ and the second column holds the estimate of the solution x. Other than the vector contained in the LOCYth column of W, W should remain unchanged between calls to BICORA/AD.

LWD is an INTEGER variable that must be set by the user to the first dimension of W. This argument is not altered by the routine. It should be greater than N. LOCY, LOCZ are INTEGER variables that need not be set by the user. On return with IACT > 1, they indicate which columns of W should be used to preform the operations

> 1, they indicate which columns of w should be used to preform the operations as specified under IACT (see above). These arguments must not be altered by the user between calls to BICORA/AD.

RESID is a REAL (DOUBLE PRECISION in the D version) variable that need not be set by the user. On return with IACT=1, it contains the 2-norm of the residual vector $||b - A\hat{x}||_2$, where \hat{x} is the current estimate of the solution.

is an INTEGER array of length 8 that has to be set by the user. The default values are set by a call to BICORA/AD as described in section B.1.1.1. Details of the control parameters are given in section B.1.2. This argument is not altered by the routine.

is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does not have to be set by the user. that has to be set by the user. The default values are set by a call to BICORA/AD as described in section B.1.1.1. Details of the control parameters are given in section B.1.2. This argument is not altered by the routine.

is an INTEGER array of length 4 that need not be set by the user. It is used to store information about the subroutine. On return of BICORA/AD, INFO(1) tells if the subroutine was successful (value 0) or if an error occurred (non-zero values). More information about this is in section B.1.3. INFO(2) holds the amount of iterations preformed by the subroutine. INFO(3) and INFO(4) are unused.

ISAVE is an INTEGER array of length 17 that must not be altered by the user.

RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must not be altered by the user.

B.1.2 Control parameters

ICNTL and CNTL contain the control parameters of BICORA/AD. ICNTL controls the actions BICORA/AD takes, and CNTL controls the tolerances used by BICORA/AD. The default values are set by BICORI/ID.

ICNTL(1) is the stream number for error messages and has default value 6. Printing of error messages is suppressed if ICNTL(1) ≤ 0 .

ICNTL(2) is the stream number for warning messages and has default value 6. Printing of warning messages is suppressed if ICNTL(1) ≤ 0 .

controls whether the user wishes to use preconditioning. It has default value 0 and in this case no preconditioning is used. If ICNTL(3) is non-zero, the user will be expected to preform preconditioning when IACT = 3.

ICNTL(4) controls whether the convergence test offered by BICORA/AD is used. It has default value 0 and in this case the computed solution \hat{x} is accepted if the 2-norm of the residual ($\|b - A\hat{x}\|_2$) is less or equal to $\max(\text{CNTL}(1) * (\text{CNTL}(2) + \|x\|_2 * \text{CNTL}(3))$, CNTL(4)), If the user does not want to use this test, ICNTL(4) should be non-zero. In this case, the user will be expected to test for convergence when IACT = 1.

- ICNTL(5) controls whether the user wishes to supply an initial estimate of the solution x. It has default value 0 and in this case the initial estimate is set to the zero vector. If the user wishes to supply an initial estimate, ICNTL(5) should be non-zero. In this case, the initial estimate should be put in the second column of W prior to the first call to BICORA/AD.
- ICNTL(6) determines the maximum number of iterations allowed. It has default value -1, and in this case the maximum number of iterations is equal to the order of the matrix A (N). If the user wishes to use a different maximum number of iterations, ICNTL(6) should be set to this number. In case of a negative number, the default will be used.
- ICNTL(7), have default value 0 and are unused by BICORA/AD
- CNTL(1) is one of the two convergence tolerances, as described under ICNTL(4). CNTL(1) has default value \sqrt{u} , where u is the relative machine precision. If ICNTL(4) is non-zero, this will not be used. See section B.2 for more information.
- CNTL(2) is the first variable used in the normwise backward error, and has a default value $||b||_2$. The default value is set in BICORA/AD, not in BICORI/ID. See section B.2 for more information.
- CNTL (3) is the second variable used in the normwise backward error, and has a default value of zero. If this is left zero, the norm of x will also not be calculated. See section B.2 for more information.
- CNTL(4) is one of the two convergence tolerances, as described under ICNTL(4).

 CNTL(2) has default value 0. If ICNTL(4) is non-zero, this will not be used.

 See section B.2 for more information.
- CNTL (5) is the breakdown tolerance. It has default value u, where u is the relative machine precision. If ρ is close enough to zero according to this tolerance, the method has broken down. See section B.2 for more information.
- CNTL(4), have default value 0 and are unused by BICORA/AD CNTL(5)

B.1.3 Error values

Upon the return of BICORA/AD, negative values for INFO(1) indicate an error and positive values indicate a warning. If everything went well, the value should be zero. Error messages are written to ICNTL(1) and warnings to ICNTL(2). Possible non-zero values for INFO(1) are:

- -1 The value of N is out of range (< 1). There is an immediate return without any input parameters changed.
- -2 The value of LWD is out of range (< N). There is an immediate return without any input parameters changed.
- -3 The algorithm has broken down.
- -4 The maximum amount of iterations determined by ICNTL(6) if it is not the default or N if ICNTL(6) is the default has been exceeded.
- 1 The convergence tolerance specified by the user in CNTL(1) lies outside the interval (u, 1.0) where u is the machine precision. CNTL(1) is reset to the default value \sqrt{u} .

B.1.4 General information

Files needed to run the algorithm:

bicor.f, ddeps.f

Routines called:

BLAS SNRM2/DNRM2, SCOPY/DCOPY, SAXPY/DAXPY, SSCAL/DSCAL, SDOT/DDOT

HSL FD15A/AD

Restriction:

 ${\rm LWD} \geq {\rm N} \geq 1$

B.2 Implementation

```
1
        SUBROUTINE BICORID (ICNTL, CNTL, ISAVE, RSAVE)
                                                                                                 61
                                                                                                         B
                                                                                                                  = ISAVE(3)
2 C Variables passed to the subroutine
                                                                                                 62
                                                                                                                  = ISAVE(4)
                                                                                                         X
        IMPLICIT NONE
                                                                                                 63
                                                                                                                   = ISAVE(5)
                                                                                                         R
        DOUBLE PRECISION CNTL (5)
                                                                                                          RPRM
                                                                                                                  = ISAVE(6)
                                                                                                 64
        INTEGER ICNTL (8)
5
                                                                                                 65
                                                                                                                   = ISAVE(7)
6
        INTEGER ISAVE (17)
                                                                                                 66
                                                                                                          ZRPRM
                                                                                                                 = ISAVE(8)
        DOUBLE PRECISION RSAVE (9)
                                                                                                 67
                                                                                                          ZRHAT
                                                                                                                  = ISAVE(9)
8 C Local variables
                                                                                                 68
                                                                                                                   = ISAVE(10)
        INTEGER I
                                                                                                 69
                                                                                                          PPRM
                                                                                                                 = ISAVE(11)
        DOUBLE PRECISION ZERO
                                                                                                                  = ISAVE(12)
10
                                                                                                 70
                                                                                                          OPRM = ISAVE(13)
        PARAMETER (ZERO=0.0D+0)
                                                                                                 71
11
        DOUBLE PRECISION FD15AD
                                                                                                          OPRMHAT = ISAVE(14)
12
                                                                                                 72
        EXTERNAL FD15AD
13
                                                                                                 73
                                                                                                          ZOPRMHAT = ISAVE (15)
14
        INTRINSIC SORT
                                                                                                 74
                                                                                                          BNRM2 = RSAVE(1)
15
       ICNTL(1) = 6
                                                                                                 75
                                                                                                          ALPHA = RSAVE(2)
16
       ICNTL(2) = 6
                                                                                                 76
                                                                                                          BETA = RSAVE(3)
17
       ICNTL(3) = 0
                                                                                                 77
                                                                                                          RHO = RSAVE (4)
18
       ICNTL(4) = 0
                                                                                                 78
                                                                                                          RHO1 = RSAVE (5)
19
       ICNTL(5) = 0
                                                                                                 79
                                                                                                          XNRM2 = RSAVE(6)
                                                                                                          IF (IACT.EQ.0) GO TO 10
20
       ICNTL(6) = -1
                                                                                                 80
21
       ICNTL(7) = 0
                                                                                                 81
                                                                                                          IF (IACT.LT.0) GO TO 1000
22
       ICNTL(8) = 0
                                                                                                 82
                                                                                                          IF (IACT.EQ.1 .AND. ICNTL(4).EQ.0) GO TO 1000
23
       CNTL(1) = SQRT(FD15AD('E'))
                                                                                                 83
                                                                                                          IF (IACT.EQ.1 .AND. BNRM2.EQ.ZERO) GO TO 1000
24
       CNTL(2) = ZERO
                                                                                                 84
                                                                                                          IF (IPOS.EO.1) GO TO 40
25
       CNTL(3) = ZERO
                                                                                                 85
                                                                                                          IF (IPOS.EQ.2) GO TO 60
26
        CNTL(4) = ZERO
                                                                                                          IF (IPOS.EQ.3) GO TO 70
                                                                                                 86
27
        CNTL(5) = FD15AD('E')
                                                                                                 87
                                                                                                          IF (IPOS.EQ.4) GO TO 80
28
        DO 10 I = 1, 15
                                                                                                 88
                                                                                                          IF (IPOS.EQ.5) GO TO 90
29
       ISAVE(I) = 0
                                                                                                 89
                                                                                                          IF (IPOS.EQ.6) GO TO 100
    10 CONTINUE
30
                                                                                                 90
                                                                                                         IF (IPOS.EQ.7) GO TO 110
        DO 20 I = 1, 9
31
                                                                                                 91
                                                                                                          IF (IPOS.EQ.8) GO TO 120
       RSAVE(I) = 0.0
                                                                                                 92 10 CONTINUE
32
    20 CONTINUE
                                                                                                         INFO(1) = 0
33
                                                                                                 93
                                                                                                 94 C No negative order possible
34
        RETURN
35
                                                                                                         IF (N.LE.O) THEN
        SUBROUTINE BICORAD (IACT. N. W. LDW. LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
36
                                                                                                 96
                                                                                                            INFO(1) = -1
37
                        ISAVE, RSAVE)
                                                                                                 97 C W can't be larger than the order
38 C Variables passed to the subroutine
                                                                                                         ELSE IF (LDW.LT.MAX(1,N)) THEN
        IMPLICIT NONE
                                                                                                 99
                                                                                                            INFO(1) = -2
40
        DOUBLE PRECISION RESID
                                                                                                 100
                                                                                                          END IF
        INTEGER IACT, LDW, LOCY, LOCZ, N
                                                                                                101\ {\rm C} Something went wrong, return an error
41
        DOUBLE PRECISION CNTL (5), W (LDW, 9)
42
                                                                                                         IF (INFO(1).LT.0) THEN
                                                                                                102
43
        INTEGER ICNTL(8), INFO(4)
                                                                                                103
                                                                                                            TACT = -1
44
        INTEGER ISAVE (17)
                                                                                                            IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
                                                                                                104
45
        DOUBLE PRECISION RSAVE (9)
                                                                                                105
                                                                                                            GO TO 1000
46 C Local variables
                                                                                                106
                                                                                                          END IF
        DOUBLE PRECISION ONE, ZERO
                                                                                                          B = 1
47
                                                                                                107
48
        PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
                                                                                                108
                                                                                                          X = 2
49
        DOUBLE PRECISION BNRM2, RNRM2, RTNRM2, ALPHA, BETA, RHO, RHO1,
                                                                                                109
                                                                                                          R = 1
50
                        XNRM2
                                                                                                110
                                                                                                          RPRM = 3
51
        INTEGER B, R, X, RPRM, ZR, ZRPRM, ZRHAT, P, PPRM, Q, QPRM,
                                                                                                111
                                                                                                          7.R = 4
52
               OPRMHAT, ZOPRMHAT, ITMAX, IPOS, I
                                                                                                112
                                                                                                          ZRPRM = 5
53
        DOUBLE PRECISION DDOT, DNRM2, FD15AD
                                                                                                113
                                                                                                          ZRHAT = 6
54
        EXTERNAL DDOT, DNRM2, FD15AD
                                                                                                114
                                                                                                         P = 7
55
        INTRINSIC ABS, MAX, SORT
                                                                                                115
                                                                                                         PPRM = 8
56
        EXTERNAL DAXPY, DCOPY, DSCAL
                                                                                                116
                                                                                                         0 = 9
57 C Code
                                                                                                117
                                                                                                          OPRM = 3
58 C Load all the local variables as they were on the last run
                                                                                                118
                                                                                                          OPRMHAT = 6
        IPOS = ISAVE(1)
                                                                                                119
                                                                                                          ZOPRMHAT = 10
60
        ITMAX = ISAVE(2)
                                                                                                120
                                                                                                          INFO(2) = 0
```

```
121 C Max amount of iterations is N
     TTMAX = N
123 C or ICNTL(6) if specified
     IF (ICNTL(6).GT.0) ITMAX = ICNTL(6)
125 C If the 2 norm of b is zero, that means that b is zero, so the solution
126 C is zero, the residual is zero, everything is zero
        BNRM2 = DNRM2(N,W(1,B),1)
128
        IF (BNRM2.EQ.ZERO) THEN
129
           IACT = 1
           DO 20 I = 1, N
130
               W(I,X) = ZERO
131
               W(I,B) = ZERO
132
     20 CONTINUE
133
           RESID = ZERO
134
            GO TO 1000
135
137 C In this case, the user may test for convergence when IACT = 1 is
        IF (ICNTL(4).EQ.0) THEN
           IF (CNTL(1).LT.FD15AD('E') .OR. CNTL(1).GT.ONE) THEN
140
141
               INFO(1) = 1
142
               IF (ICNTL(2).GT.0) THEN
143
                  WRITE (ICNTL(2), FMT=9010) INFO(1)
144
                  WRITE (ICNTL(2),FMT=9020)
145
               END IF
               CNTL(1) = SQRT(FD15AD('E'))
146
147
            IF (CNTL(2).EQ.ZERO) THEN
148
149
               CNTL(2) = BNRM2
            END IF
150
         END IF
152\ \text{C} Initial estimate for x is the 0 vector
        IF (ICNTL(5).EQ.0) THEN
           DO 30 I = 1, N
154
155
               W(I,X) = ZERO
     30 CONTINUE
156
157
            GO TO 50
         ELSE
159 C or if ICNTL(5) is not 0, you need to have specified W(1,X)
            IF (DNRM2(N, W(1, X), 1).EQ.ZERO) GO TO 50
161
            IPOS = 1
            IACT = 2
169
            LOCY = P
163
           I_1OCZ_1 = X
164
165
           GO TO 1000
166
        END IF
167 C We have x and b, so r = -p (is Ax) + r (is b), so b-Ax
168 C We don't need b any more
169 40 CALL DAXPY(N, -ONE, W(1, P), 1, W(1, R), 1)
170 50 CONTINUE
171 C Set r prime as Ar
        IPOS = 2
172
173
        IACT = 2
174
        LOCY = RPRM
175
        LOCZ = R
176
        GO TO 1000
177 60 CONTINUE
178 C Calculate zr prime on the first run
        IF (ICNTL(3).NE.0) THEN
180
           IPOS = 3
```

```
181
             IACT = 5
182
             LOCY = ZRPRM
183
             LOCZ = RPRM
             GO TO 1000
184
          ELSE
185
186
            CALL DCOPY (N, W (1, RPRM), 1, W (1, ZRPRM), 1)
187
          END IF
188
      70 CONTINUE
189
         INFO(2) = INFO(2) + 1
190 C Check maximum number of iterations has not been exceeded.
          IF (INFO(2).GT.ITMAX) THEN
191
192
            INFO(1) = -4
103
             IACT = -1
194
             IF (ICNTL(1).GT.0) THEN
                WRITE (ICNTL(1), FMT=9000) INFO(1)
195
196
                WRITE (ICNTL(1), FMT=9030) ITMAX
197
             END IF
198
             GO TO 1000
          END IF
199
200 C Perform the preconditioning operation
         IF (ICNTL(3).NE.0) THEN
201
202
             TPOS = 4
203
             TACT = 3
204
             LOCY = ZR
205
             LOCZ = R
             GO TO 1000
206
207
          ELSE
208
             CALL DCOPY (N, W(1, R), 1, W(1, ZR), 1)
          END IF
209
210 80 CONTINUE
211 C Calculate zr hat
         TPOS = 5
212
         TACT = 2
213
21/
         LOCY = ZRHAT
215
         LOCZ = ZR
          GO TO 1000
216
217 90 CONTINUE
218 C See if the algorithm broke down. Otherwise, we can use rho in the
219 C remaining part of the algorithm
         RHO = DDOT(N, W(1, ZRPRM), 1, W(1, ZRHAT), 1)
221
          IF (ABS(RHO).LT.CNTL(5)*N) THEN
            RNRM2 = DNRM2(N,W(1,R),1)
222
             RTNRM2 = DNRM2(N,W(1,RPRM),1)
223
             IF (ABS(RHO).LT.CNTL(5)*RNRM2*RTNRM2) THEN
224
225
               INFO(1) = -3
226
                TACT = -1
                IF (ICNTL(1).GT.0) WRITE (ICNTL(1), FMT=9000) INFO(1)
227
228
                GO TO 1000
229
             END IF
          END IF
230
231
          IF (INFO(2).GT.1) THEN
232
             BETA = RHO/RHO1
233
             CALL DSCAL (N, BETA, W(1, P), 1)
234
             CALL DAXPY (N, ONE, W(1, ZR), 1, W(1, P), 1)
235
             CALL DSCAL (N, BETA, W(1, PPRM), 1)
236
             CALL DAXPY (N, ONE, W(1, ZRPRM), 1, W(1, PPRM), 1)
237
             CALL DSCAL (N. BETA, W(1, 0), 1)
238
             CALL DAXPY (N, ONE, W(1, ZRHAT), 1, W(1, Q), 1)
239
240
             CALL DCOPY (N, W(1, ZR), 1, W(1, P), 1)
```

```
241
            CALL DCOPY (N, W(1, ZRPRM), 1, W(1, PPRM), 1)
            CALL DCOPY(N,W(1,ZRHAT),1,W(1,Q),1)
242
243
         END IF
244
         IPOS = 6
245
         IACT = 4
246
         LOCY = QPRMHAT
247
         LOCZ = PPRM
248
         GO TO 1000
249 100 CONTINUE
250 C Perform preconditioning
         IF (ICNTL(3).NE.0) THEN
            IPOS = 7
252
253
            IACT = 5
254
            LOCY = ZOPRMHAT
            LOCZ = OPRMHAT
255
256
            GO TO 1000
257
         ELSE
258
            CALL DCOPY (N, W (1, QPRMHAT), 1, W (1, ZQPRMHAT), 1)
         END IF
259
    110 CONTINUE
260
         ALPHA = RHO/DDOT(N, W(1, ZQPRMHAT), 1, W(1,Q), 1)
262
         CALL DAXPY (N, ALPHA, W(1, P), 1, W(1, X), 1)
263
         CALL DAXPY(N,-ALPHA,W(1,Q),1,W(1,R),1)
264
         CALL DAXPY (N, -ALPHA, W(1, ZQPRMHAT), 1, W(1, ZRPRM), 1)
265
         RESID = DNRM2 (N, W(1, R), 1)
266
267 C The user can check the error if ICNTL(4) is non-zero at IACT.EQ.1
268
         IF (ICNTL(4).NE.0) THEN
269
           IACT = 1
270
            GO TO 1000
271
            IF (CNTL(3).NE.ZERO) THEN
272
               XNRM2 = DNRM2(N,W(1,X),1)
273
274
275
            IF (RESID.LE.MAX(CNTL(1)*(CNTL(2)+XNRM2*CNTL(3)),CNTL(4))) THEN
276
277
               GO TO 1000
278
            END IF
279
         END IF
280 120 CONTINUE
281
         RHO1 = RHO
         GO TO 70
282
283 1000 CONTINUE
284\ {\text{C}} Save all the local variables to use on the next run
285
         ISAVE(1) = IPOS
         ISAVE(2) = ITMAX
286
287
         ISAVE(3) = B
288
         ISAVE(4) = X
289
         ISAVE(5) = R
290
         ISAVE(6) = RPRM
         ISAVE(7) = ZR
291
292
         ISAVE(8) = ZRPRM
         ISAVE(9) = ZRHAT
293
294
         ISAVE(10) = P
295
         ISAVE(11) = PPRM
296
         ISAVE(12) = Q
         ISAVE(13) = OPRM
297
298
         ISAVE(14) = OPRMHAT
299
         ISAVE(15) = ZOPRMHAT
300
         RSAVE(1) = BNRM2
```

```
301
         RSAVE(2) = ALPHA
302
         RSAVE(3) = BETA
303
         RSAVE(4) = RHO
         RSAVE(5) = RHO1
304
305
         RSAVE(6) = XNRM2
306
         RETURN
307 9000 FORMAT (/' Error message from BICOR. INFO(1) = ', I4)
308 9010 FORMAT (/' Warning message from BICOR. INFO(1) = ',14)
309 9020 FORMAT (' Convergence tolerance out of range.')
310 9030 FORMAT (' Number of iterations required exceeds the maximum of ',
               I8,/' allowed by ICNTL(6)')
311
312
```

C Implementation of CORS

C.1 User documentation

The implementation of the algorithm is based on the methods used in the Harwell Subroutine Library (HSL) [23]. Since the implementation is quite similar, the documentation is also quite similar to the documentation for the various subroutines in the HSL.

C.1.1 Argument lists and calling sequence

C.1.1.1 Initialization of the control parameters

The following subroutines have to be called before using the algorithm with CORSA(D). For single precision we have

```
CALL CORSI(ICNTL, CNTL, ISAVE, RSAVE)
```

and for double precision we have

```
CALL CORSID (ICNTL, CNTL, ISAVE, RSAVE)
```

where

- ICNTL is an INTEGER array of length 8 that does not have to be set by the user. On return, it contains the default values as described in section C.1.2.
- CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does not have to be set by the user. On return, it contains the default values and described in section C.1.2.
- ISAVE is an INTEGER array of length 19 that must not be altered by the user.
- RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must not be altered by the user.

C.1.1.2 Solving Ax=b

Here we will actually solve Ax = b. For single precision we have

```
CALL CORSA(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO, + ISAVE, RSAVE)
```

and for double precision we have

```
CALL CORSAD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO, + ISAVE, RSAVE)
```

where

IACT

is an INTEGER that indicate the action the user has to preform on every return of the CORSA/AD routines. Prior to the first call to CORSA/AD, IACT should be set to 0. Possible values are as follows:

- -1 An error occurred, and the user must terminate the computation. The reason for the error is in INFO(1). See section C.1.3 for more information.
- 1 If ICNTL(4)=0 (the default value), convergence has been achieved, and the user should terminate the computation. If ICNTL(4) is nonzero, the user may test for convergence. If convergence has not been achieved, CORSA/AD should be called again, without changes to its arguments.
- 2 The user must preform the matrix-vector product

$$y = Az$$

and recall CORSA/AD. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z.

3 The user must preform the preconditioning operation

$$y = Mz$$

where M is the preconditioner. The vectors y and z are in columns LOCY and LOCZ of array W respectively. The user should not change z. Preconditioning is only used when ICNTL(3) is nonzero.

Ν

is an INTEGER variable that must be set by the user to the order of the matrix A. The variable must be preserved between calls to CORSA/AD. This argument is not altered by the routine.

W

is a REAL (DOUBLE PRECISION in the D version) two-dimensional array with dimensions (LWD, 13). Prior to the first call to CORSA/AD, the first column must hold the right hand side b. IF ICNTL(5) is nonzero, the second column must contain the initial estimate of the solution x. On exit, the first column holds the residual $r = b - A\hat{x}$ and the second column holds the estimate of the solution x. Other than the vector contained in the LOCYth column of W, W should remain unchanged between calls to CORSA/AD.

LWD

is an INTEGER variable that must be set by the user to the first dimension of W. This argument is not altered by the routine. It should be greater than N.

LOCY, LOCZ

are INTEGER variables that need not be set by the user. On return with IACT > 1, they indicate which columns of w should be used to preform the operations as specified under IACT (see above). These arguments must not be altered by the user between calls to CORSA/AD.

RESID

is a REAL (DOUBLE PRECISION in the D version) variable that need not be set by the user. On return with IACT=1, it contains the 2-norm of the residual vector $||b - A\hat{x}||_2$, where \hat{x} is the current estimate of the solution.

ICNTL

is an INTEGER array of length 8 that has to be set by the user. The default values are set by a call to CORSA/AD as described in section C.1.1.1. Details of the control parameters are given in section C.1.2. This argument is not altered by the routine.

is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does not have to be set by the user. that has to be set by the user. The default values are set by a call to CORSA/AD as described in section C.1.1.1. Details of the control parameters are given in section C.1.2. This argument is not altered by the routine.

is an INTEGER array of length 4 that need not be set by the user. It is used to store information about the subroutine. On return of CORSA/AD, INFO(1) tells if the subroutine was successful (value 0) or if an error occurred (non-zero values). More information about this is in section C.1.3. INFO(2) holds the amount of iterations preformed by the subroutine. INFO(3) and INFO(4) are unused.

ISAVE is an INTEGER array of length 17 that must not be altered by the user.

RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must not be altered by the user.

C.1.2 Control parameters

ICNTL and CNTL contain the control parameters of CORSA/AD. ICNTL controls the actions CORSA/AD takes, and CNTL controls the tolerances used by CORSA/AD. The default values are set by CORSI/ID.

- ICNTL(1) is the stream number for error messages and has default value 6. Printing of error messages is suppressed if ICNTL(1) < 0.
- ICNTL(2) is the stream number for warning messages and has default value 6. Printing of warning messages is suppressed if ICNTL(1) ≤ 0 .
- ICNTL(3) controls whether the user wishes to use preconditioning. It has default value 0 and in this case no preconditioning is used. If ICNTL(3) is non-zero, the user will be expected to preform preconditioning when IACT = 3.
- ICNTL(4) controls whether the convergence test offered by CORSA/AD is used. It has default value 0 and in this case the computed solution \hat{x} is accepted if the 2-norm of the residual ($\|b A\hat{x}\|_2$) is less or equal to $\max(\text{CNTL}(1) * (\text{CNTL}(2) + \|x\|_2 * \text{CNTL}(3))$, CNTL(4)), If the user does not want to use this test, ICNTL(4) should be non-zero. In this case, the user will be expected to test for convergence when IACT = 1.
- controls whether the user wishes to supply an initial estimate of the solution x. It has default value 0 and in this case the initial estimate is set to the zero vector. If the user wishes to supply an initial estimate, ICNTL(5) should be non-zero. In this case, the initial estimate should be put in the second column of w prior to the first call to CORSA/AD.
- ICNTL (6) determines the maximum number of iterations allowed. It has default value -1, and in this case the maximum number of iterations is equal to the order of the matrix A (N). If the user wishes to use a different maximum number of iterations, ICNTL (6) should be set to this number. In case of a negative number, the default will be used.
- ICNTL(7), have default value 0 and are unused by CORSA/AD
- CNTL(1) is one of the two convergence tolerances, as described under ICNTL(4). CNTL(1) has default value \sqrt{u} , where u is the relative machine precision. If ICNTL(4) is non-zero, this will not be used. See section C.2 for more information.

- CNTL (2) is the first variable used in the normwise backward error, and has a default value $||b||_2$. The default value is set in CORSA/AD, not in CORSI/ID. See section C.2 for more information.
- CNTL (3) is the second variable used in the normwise backward error, and has a default value of zero. If this is left zero, the norm of x will also not not be calculated. See section C.2 for more information.
- CNTL(4) is one of the two convergence tolerances, as described under ICNTL(4).

 CNTL(2) has default value 0. If ICNTL(4) is non-zero, this will not be used.

 See section C.2 for more information.
- CNTL (5) is the breakdown tolerance. It has default value u, where u is the relative machine precision. If ρ is close enough to zero according to this tolerance, the method has broken down. See section C.2 for more information.

C.1.3 Error values

Upon the return of CORSA/AD, negative values for INFO(1) indicate an error and positive values indicate a warning. If everything went well, the value should be zero. Error messages are written to ICNTL(1) and warnings to ICNTL(2). Possible non-zero values for INFO(1) are:

- -1 The value of N is out of range (< 1). There is an immediate return without any input parameters changed.
- -2 The value of LWD is out of range (< N). There is an immediate return without any input parameters changed.
- -3 The algorithm has broken down.
- -4 The maximum amount of iterations determined by ICNTL(6) if it is not the default or N if ICNTL(6) is the default has been exceeded.
- 1 The convergence tolerance specified by the user in CNTL(1) lies outside the interval (u, 1.0) where u is the machine precision. CNTL(1) is reset to the default value \sqrt{u} .

C.1.4 General information

Files needed to run the algorithm:

```
cors.f, ddeps.f
```

Routines called:

BLAS SNRM2/DNRM2, SCOPY/DCOPY, SAXPY/DAXPY, SSCAL/DSCAL, SDOT/DDOT

Restriction:

HSL FD15A/AD

 ${\tt LWD} \geq {\tt N} \geq 1$

C.2 Implementation

```
61
1
        SUBROUTINE CORSID (ICNTL, CNTL, ISAVE, RSAVE)
                                                                                                         B
                                                                                                                 = ISAVE(3)
2 C Variables passed to the subroutine
                                                                                                62
                                                                                                                  = ISAVE(4)
                                                                                                        X
        IMPLICIT NONE
                                                                                                63
                                                                                                                  = ISAVE(5)
                                                                                                         R
        DOUBLE PRECISION CNTL (5)
                                                                                                         RPRM
                                                                                                                 = ISAVE(6)
                                                                                                64
        INTEGER ICNTL (8)
                                                                                                                  = ISAVE(7)
5
                                                                                                65
                                                                                                         Z.R
6
        INTEGER ISAVE (19)
                                                                                                66
                                                                                                         ZRHAT
                                                                                                                = ISAVE(8)
        DOUBLE PRECISION RSAVE (9)
                                                                                                67
                                                                                                                  = ISAVE(9)
8 C Local variables
                                                                                                68
                                                                                                         ZE
                                                                                                                  = ISAVE(10)
        INTEGER I
                                                                                                69
                                                                                                         D
                                                                                                                 = ISAVE(11)
        DOUBLE PRECISION ZERO
                                                                                                                 = ISAVE(12)
10
                                                                                                70
                                                                                                         0
        PARAMETER (ZERO=0.0D+0)
                                                                                                                  = ISAVE(13)
                                                                                                71
                                                                                                         ZO
11
        DOUBLE PRECISION FD15AD
                                                                                                         ZOHAT = ISAVE(14)
12
                                                                                                72
13
        EXTERNAL FD15AD
                                                                                                73
                                                                                                                  = ISAVE(15)
                                                                                                         Н
14
        INTRINSIC SORT
                                                                                                74
                                                                                                         F
                                                                                                                  = ISAVE(16)
15
        ICNTL(1) = 6
                                                                                                75
                                                                                                         G
                                                                                                                 = ISAVE(17)
16
       ICNTL(2) = 6
                                                                                                76
                                                                                                         BNRM2 = RSAVE(1)
17
       ICNTL(3) = 0
                                                                                                77
                                                                                                         ALPHA = RSAVE(2)
18
       ICNTL(4) = 0
                                                                                                78
                                                                                                         BETA = RSAVE(3)
19
       ICNTL(5) = 0
                                                                                                79
                                                                                                         RHO = RSAVE (4)
                                                                                                         RHO1 = RSAVE (5)
20
       ICNTL(6) = -1
                                                                                                80
                                                                                                         XNRM2 = RSAVE(6)
21
       ICNTL(7) = 0
                                                                                                81
22
       ICNTL(8) = 0
                                                                                                82
                                                                                                         IF (IACT.EQ.0) GO TO 10
23
       CNTL(1) = SQRT(FD15AD('E'))
                                                                                                83
                                                                                                         IF (IACT.LT.0) GO TO 1000
24
       CNTL(2) = ZERO
                                                                                                84
                                                                                                         IF (IACT.EO.1 .AND. ICNTL(4).EO.0) GO TO 1000
25
        CNTL(3) = ZERO
                                                                                                85
                                                                                                         IF (IACT.EQ.1 .AND. BNRM2.EQ.ZERO) GO TO 1000
26
        CNTL(4) = ZERO
                                                                                                         IF (IPOS.EQ.1) GO TO 40
                                                                                                86
27
        CNTL(5) = FD15AD('E')
                                                                                                87
                                                                                                         IF (IPOS.EQ.2) GO TO 60
28
        DO 10 I = 1, 19
                                                                                                88
                                                                                                         IF (IPOS.EQ.3) GO TO 70
29
        ISAVE(I) = 0
                                                                                                89
                                                                                                         IF (IPOS.EQ.4) GO TO 80
     10 CONTINUE
30
                                                                                                90
                                                                                                         IF (IPOS.EQ.5) GO TO 90
        DO 20 I = 1, 9
                                                                                                         IF (IPOS.EQ.6) GO TO 100
31
                                                                                                91
        RSAVE(I) = 0.0
                                                                                                         IF (IPOS.EQ.7) GO TO 110
32
                                                                                                92
     20 CONTINUE
                                                                                                         IF (IPOS.EQ.8) GO TO 120
33
                                                                                                93
34
        RETURN
                                                                                                94 10 CONTINUE
35
                                                                                                95
                                                                                                        INFO(1) = 0
        SUBROUTINE CORSAD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
                                                                                                96 C No negative order possible
36
37
                        ISAVE, RSAVE)
                                                                                                         IF (N.LE.O) THEN
38 C Variables passed to the subroutine
                                                                                                           INFO(1) = -1
        IMPLICIT NONE
                                                                                                99 C W can't be larger than the order
40
        DOUBLE PRECISION RESID
                                                                                                        ELSE IF (LDW.LT.MAX(1,N)) THEN
41
        INTEGER IACT, LDW, LOCY, LOCZ, N
                                                                                               101
                                                                                                           INFO(1) = -2
        DOUBLE PRECISION CNTL (5), W (LDW, 13)
                                                                                                         END IF
42
                                                                                               102
43
        INTEGER ICNTL(8), INFO(4)
                                                                                                103 C Something went wrong, return an error
44
        INTEGER ISAVE (19)
                                                                                               104
                                                                                                        IF (INFO(1).LT.0) THEN
45
        DOUBLE PRECISION RSAVE (9)
                                                                                               105
                                                                                                           IACT = -1
46 C Local variables
                                                                                               106
                                                                                                           IF (ICNTL(1).GT.0) WRITE (ICNTL(1), FMT=9000) INFO(1)
        DOUBLE PRECISION TWO, ONE, ZERO
47
                                                                                               107
                                                                                                           GO TO 1000
48
        PARAMETER (TWO=2.0D+0,ONE=1.0D+0,ZERO=0.0D+0)
                                                                                               108
                                                                                                         END IF
49
        DOUBLE PRECISION BNRM2, RNRM2, RTNRM2, ALPHA, BETA, RHO, RHO1,
                                                                                               109
                                                                                                         B = 1
50
                        XNRM2
                                                                                               110
                                                                                                         X = 2
        INTEGER B, R, X, RPRM, ZR, ZRHAT, E, ZE, D, Q, ZQ, ZQHAT, H, F, G,
51
                                                                                               111
                                                                                                         R = 1
52
              ITMAX, IPOS, I
                                                                                               112
                                                                                                         RPRM = 3
53
        DOUBLE PRECISION DDOT, DNRM2, FD15AD
                                                                                               113
                                                                                                         7R = 4
54
        EXTERNAL DDOT, DNRM2, FD15AD
                                                                                               114
                                                                                                         ZRHAT = 5
55
        INTRINSIC ABS, MAX, SORT
                                                                                               115
                                                                                                         E = 6
56
        EXTERNAL DAXPY, DCOPY, DSCAL
                                                                                               116
                                                                                                         ZE = 7
                                                                                                         D = 8
57 C Code
                                                                                               117
                                                                                                         0 = 9
58 C Load all the local variables as they were on the last run
                                                                                               118
        IPOS = ISAVE(1)
                                                                                                         ZQ = 5
60
        ITMAX = ISAVE(2)
                                                                                                         ZOHAT = 10
```

```
121
        H = 11
122
        F = 12
123
        G = 13
        INFO(2) = 0
124
125 C Max amount of iterations is N
        ITMAX = N
127 C or ICNTL(6) if specified
      IF (ICNTL(6).GT.0) ITMAX = ICNTL(6)
129 C If the 2 norm of b is zero, that means that b is zero, so the solution
130 C is zero, the residual is zero, everything is zero
        BNRM2 = DNRM2(N,W(1,B),1)
        IF (BNRM2.EQ.ZERO) THEN
132
133
           IACT = 1
134
           DO 20 I = 1, N
135
              W(I,X) = ZERO
136
               W(I,B) = ZERO
137
     20 CONTINUE
138
           RESID = ZERO
139
            GO TO 1000
         END IF
140
141\ \text{C} In this case, the user may test for convergence when IACT = 1 is
142 C returned.
143
         IF (ICNTL(4).EQ.0) THEN
144
            IF (CNTL(1).LT.FD15AD('E') .OR. CNTL(1).GT.ONE) THEN
145
               INFO(1) = 1
               IF (ICNTL(2).GT.0) THEN
146
147
                  WRITE (ICNTL(2), FMT=9010) INFO(1)
                  WRITE (ICNTL(2), FMT=9020)
148
149
               END IF
150
               CNTL(1) = SQRT(FD15AD('E'))
            END IF
151
            IF (CNTL(2).EQ.ZERO) THEN
152
               CNTL(2) = BNRM2
153
154
            END IF
155
         END IF
156 C Initial estimate for x is the 0 vector
        IF (ICNTL(5).EQ.0) THEN
158
           DO 30 I = 1, N
159
              W(I,X) = ZERO
     30 CONTINUE
160
161
           GO TO 50
        ELSE
162
163 C or if ICNTL(5) is not 0, you need to have specified W(1,X)
            IF (DNRM2(N,W(1,X),1).EQ.ZERO) GO TO 50
164
165
            IPOS = 1
166
            TACT = 2
            LOCY = Q
167
168
            LOCZ = X
            GO TO 1000
169
170
         END IF
171 C We have x and b, so r = -q (is Ax) + r (is b), so b-Ax
172 C We don't need b any more
173 40 CALL DAXPY(N, -ONE, W(1,Q),1,W(1,R),1)
174 50 CONTINUE
175 C Set r prime as Ar
176
        IPOS = 2
        IACT = 2
177
        LOCY = RPRM
178
179
        LOCZ = R
180
         GO TO 1000
```

```
181 60 CONTINUE
          INFO(2) = INFO(2) + 1
183 C Check maximum number of iterations has not been exceeded.
          IF (INFO(2).GT.ITMAX) THEN
184
185
              INFO(1) = -4
186
              IACT = -1
187
              IF (ICNTL(1).GT.0) THEN
188
                 WRITE (ICNTL(1), FMT=9000) INFO(1)
189
                 WRITE (ICNTL(1), FMT=9030) ITMAX
190
              END IF
             GO TO 1000
191
          END IF
192
193 C Perform the preconditioning operation
          IF (ICNTL(3).NE.0) THEN
194
195
              IPOS = 3
196
              IACT = 3
197
              LOCY = ZR
198
             LOCZ = R
199
              GO TO 1000
          ELSE
200
201
              CALL DCOPY (N, W(1, R), 1, W(1, ZR), 1)
202
          END IF
203
      70 CONTINUE
204 C Calculate zr hat
205
          TPOS = 4
          IACT = 2
206
207
          LOCY = ZRHAT
208
          LOCZ = ZR
          GO TO 1000
209
210 80 CONTINUE
211\ \mathsf{C} See \mathbf{if} the algorithm broke down. Otherwise, we can \mathbf{use} rho \mathbf{in} the
212 C remaining part of the algorithm
          RHO = DDOT(N, W(1, RPRM), 1, W(1, ZRHAT), 1)
213
214
          IF (ABS(RHO).LT.CNTL(5)*N) THEN
215
              RNRM2 = DNRM2(N,W(1,R),1)
216
              RTNRM2 = DNRM2(N,W(1,RPRM),1)
217
              IF (ABS(RHO).LT.CNTL(5)*RNRM2*RTNRM2) THEN
218
                 INFO(1) = -3
219
                 IACT = -1
220
                 IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
221
                 GO TO 1000
             END IF
222
          END IF
223
224
          IF (INFO(2).GT.1) THEN
225
             BETA = RHO/RHO1
226 \text{ C e} = \text{r} + \text{beta*h}
              CALL DCOPY (N, W(1, R), 1, W(1, E), 1)
227
228
              CALL DAXPY (N, BETA, W (1, H), 1, W (1, E), 1)
229 \text{ C ze} = \text{zr} + \text{beta*f}
              CALL DCOPY (N, W(1, ZR), 1, W(1, ZE), 1)
231
              CALL DAXPY (N, BETA, W (1, F), 1, W (1, ZE), 1)
232 C d = zrhat + beta*q
233
              CALL DCOPY (N, W (1, ZRHAT), 1, W (1, D), 1)
234
              CALL DAXPY (N, BETA, W(1, G), 1, W(1, D), 1)
235 \text{ C q} = d + beta * (g + beta * q)
              CALL DSCAL (N, BETA, W(1, 0), 1)
236
237
              CALL DAXPY (N, ONE, W(1, G), 1, W(1, Q), 1)
238
              CALL DSCAL (N, BETA, W(1, 0), 1)
239
              CALL DAXPY (N, ONE, W(1, D), 1, W(1, O), 1)
240
          ELSE
```

```
241
             CALL DCOPY (N, W (1, R), 1, W (1, E), 1)
242
             CALL DCOPY (N, W (1, ZRHAT), 1, W (1, D), 1)
243
             CALL DCOPY (N, W(1, ZRHAT), 1, W(1, 0), 1)
244 C Calculate ze on the first run by a preconditioning operation
             IF (ICNTL(3).NE.0) THEN
246
                IPOS = 5
                IACT = 3
247
248
                LOCY = ZE
249
                LOCZ = E
                GO TO 1000
250
             ELSE
251
                CALL DCOPY (N, W(1, E), 1, W(1, ZE), 1)
252
253
             END IF
254
          END IF
     90 CONTINUE
256 C Perform preconditioning
         IF (ICNTL(3).NE.0) THEN
             IPOS = 6
259
             IACT = 3
            LOCY = ZO
260
            LOCZ = O
261
262
             GO TO 1000
263
         ELSE
264
             CALL DCOPY (N, W(1, O), 1, W(1, ZO), 1)
265
          END IF
     100 CONTINUE
266
267
         IPOS = 7
268
         TACT = 2
         LOCY = ZOHAT
269
         LOCZ = ZO
270
          GO TO 1000
272 110 CONTINUE
         ALPHA = RHO/DDOT(N, W(1, RPRM), 1, W(1, ZQHAT), 1)
274 C h=e-alpha*q
          CALL DCOPY (N, W(1, E), 1, W(1, H), 1)
          CALL DAXPY(N,-ALPHA,W(1,0),1,W(1,E),1)
277 C f=ze-alpha*zg
          CALL DSCAL (N, -ALPHA, W(1, ZO), 1)
         CALL DCOPY (N, W(1, ZQ), 1, W(1, F), 1)
          CALL DAXPY(N, ONE, W(1, ZE), 1, W(1, F), 1)
281 C g=d-alpha*zghat
         CALL DSCAL (N, -ALPHA, W(1, ZQHAT), 1)
         CALL DCOPY (N, W(1, ZQHAT), 1, W(1, G), 1)
283
          CALL DAXPY (N, ONE, W(1, D), 1, W(1, G), 1)
285 C x=x+alpha*(2*ze-alpha*zq), -alpha*zq is already stored in zq
         CALL DAXPY(N, TWO, W(1, ZE), 1, W(1, ZQ), 1)
          CALL DAXPY (N, ALPHA, W(1, ZO), 1, W(1, X), 1)
288 C r=r-alpha*(2*d-alpha*zqhat), -alpha*zqhat is already stored in zqhat
         CALL DAXPY (N, TWO, W(1, D), 1, W(1, ZOHAT), 1)
         CALL DAXPY(N,-ALPHA,W(1,ZQHAT),1,W(1,R),1)
290
         RESID = DNRM2 (N, W(1, R), 1)
291
292
         IPOS = 8
293 C The user can check the error if ICNTL(4) is non-zero at IACT.EQ.1
         IF (ICNTL(4).NE.0) THEN
295
             IACT = 1
296
             GO TO 1000
297
             IF (CNTL(3).NE.ZERO) THEN
298
299
                XNRM2 = DNRM2(N,W(1,X),1)
300
             END IF
```

```
IF (RESID.LE.MAX(CNTL(1)*(CNTL(2)+XNRM2*CNTL(3)),CNTL(4))) THEN
301
302
               TACT = 1
303
               GO TO 1000
            END IF
304
305
         END IF
306
    120 CONTINUE
307
         RHO1 = RHO
308
         GO TO 60
309 1000 CONTINUE
310 C Save all the local variables to use on the next run
         ISAVE(1) = IPOS
         ISAVE(2) = ITMAX
312
313
         ISAVE(3) = B
314
         ISAVE(4) = X
         ISAVE(5) = R
315
316
         ISAVE(6) = RPRM
317
         ISAVE(7) = ZR
318
         ISAVE(8) = ZRHAT
         ISAVE(9) = E
319
320
         ISAVE(10) = ZE
         ISAVE(11) = D
321
322
         ISAVE(12) = Q
323
         ISAVE(13) = ZQ
324
         ISAVE(14) = ZOHAT
325
         TSAVE(15) = H
326
         ISAVE(16) = F
327
         ISAVE(17) = G
328
         RSAVE(1) = BNRM2
         RSAVE(2) = ALPHA
329
         RSAVE(3) = BETA
330
         RSAVE(4) = RHO
331
         RSAVE(5) = RHO1
332
         RSAVE(6) = XNRM2
333
334
         RETURN
335 9000 FORMAT (/' Error message from CORS. INFO(1) = ',I4)
336 9010 FORMAT (/' Warning message from CORS, INFO(1) = ',I4)
337 9020 FORMAT (' Convergence tolerance out of range.')
338 9030 FORMAT (' Number of iterations required exceeds the maximum of ',
339
               I8,/' allowed by ICNTL(6)')
340
         END
```

D Implementation of the testing application

```
PROGRAM TEST
1
3 C !!!!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!!!!!!!!
4 C IF ILUPACK RETURNS AN ERROR, THERE WILL APPEAR A
5 C *** glibc detected *** double free or corruption
6 C ERROR. TO PREVENT THIS, RUN THE PROGRAM WITH
7 C MALLOC CHECK =0
q
10 \text{ C} Solve the linear system A x = b
12 C
       .. Parameters ..
        TMPLTCTT NONE
13
        INTEGER N, LDW
14
15 C
16 C
       .. Local Scalars ..
        DOUBLE PRECISION RESID
17
        INTEGER I, IACT, ROWS, COLS, NNZ, RNNZ
18
19
        INTEGER LOCY, LOCZ
20
        CHARACTER REP * 10
21
        CHARACTER FIELD + 7
22
        CHARACTER SYMM*19
23
        DOUBLE PRECISION BNRM2
24 C
25 C
        .. Local Arrays ..
26
        INTEGER LOCY2(2), LOCZ2(2)
27
        DOUBLE PRECISION CNTL (5)
        DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: W
28
29
        INTEGER ICNTL(8), INFO(4)
30
        INTEGER ISAVE (19)
31
        DOUBLE PRECISION RSAVE (9)
        COMPLEX, DIMENSION(:), ALLOCATABLE :: CVAL
32
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RVAL
33
        INTEGER, DIMENSION(:), ALLOCATABLE :: IVAL
34
35
        INTEGER, DIMENSION(:), ALLOCATABLE :: INDX
36
        INTEGER, DIMENSION(:), ALLOCATABLE :: JNDX
37
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RVALO
38
        INTEGER, DIMENSION(:), ALLOCATABLE :: INDXO
39
        INTEGER, DIMENSION(:), ALLOCATABLE :: JNDXO
40
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: SOLUTION
41
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RHS
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: TEMP
42
43 C
44 C
        .. Local Variables needed for ILUPACK ..
45
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ILUA
46
        INTEGER, DIMENSION(:), ALLOCATABLE :: ILUIA
        INTEGER, DIMENSION(:), ALLOCATABLE :: ILUJA
47
48
        INTEGER, DIMENSION(:), ALLOCATABLE :: ILUIND
49 C
50 C
        .. ILUPACK external parameters
51
        INTEGER ILUMATCHING, ILUMAXIT, ILULFIL, ILULFILS, ILUNRESTART,
52
                ILUIERR, ILUMIXEDPRECISION
53
        CHARACTER ILUORDERING*20
54
        DOUBLE PRECISION ILUDROPTOL, ILUDROPTOLS, ILUCONDEST, ILURESTOL,
55
                         ILUELBOW
56
        INTEGER * 8 ILUPARAM, ILUPREC
57
        INTEGER DGNLAMGFACTOR, DGNLAMGNNZ
58
        EXTERNAL DGNLAMGINIT, DGNLAMGSOL, DGNLAMGFACTOR, DGNLAMGTSOL,
59
                 DGNLAMGNNZ, DGNLAMGDELETE
60 C
```

```
61 C
        .. Local Variables needed for BICGSTABl ..
62
         INTEGER L, LDRW, MXMV, LDWB
63
         DOUBLE PRECISION TOL
         DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: WORK
64
65
         DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: RWORK
 66
         INTEGER, DIMENSION(:), ALLOCATABLE :: IWORK
67
         INTEGER, DIMENSION(:,:), ALLOCATABLE :: IWORK2, IWORK3
68
         EXTERNAL BISTBL, PRECSOLVE, MV
69 C
70 C
         .. Variables for GMRES
71
         INTEGER M
72
         LOGICAL LSAVE (4)
 73
         DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: H
74
         INTEGER LDH
75 C
76 C
         .. Variables for QMR
         INTEGER MAXPO, MAXVW, MVEC
77
78 C
79 C
         .. Local Variables needed for testing ..
 80
         REAL TARRAY (2)
81
         CHARACTER MNAME * 50, TOL_STRING * 5
 82
         CHARACTER MFNAME * 70
 83
         CHARACTER FNAME * 70
84
         INTEGER MVOPP, MAXMVP
 85
         INTEGER FSTAT
 86
         INTEGER NPRT, PREC, CALLS, RUNS
 87
         PARAMETER (NPRT=20)
         DOUBLE PRECISION PREC TOL, PREC UPPER TOL
 88
 89 C
90 C
         .. External Subroutines ..
91
         EXTERNAL MMREAD, MMINFO
92
         EXTERNAL CORSAD, CORSID
93
         EXTERNAL BICORAD, BICORID
94
         EXTERNAL MI26AD, MI26ID
 95
         EXTERNAL MI25AD, MI25ID
96
         EXTERNAL MI24AD, MI24ID
 97
         EXTERNAL MI23AD, MI23ID
 98
         EXTERNAL AMUX, ATMUX
99
         DOUBLE PRECISION FD15AD, DNRM2
100
         EXTERNAL DCOPY, DNRM2, FD15AD
101
         EXTERNAL CLEARALL
         DOUBLE PRECISION ETA
102
103
104\ {
m C}\ {
m Some}\ {
m parameters}
105
         PARAMETER (ETA = 1.0D-10)
106
         PARAMETER (MAXMVP = 20000)
107
108 C Open the list with matrices
         OPEN(11, FILE='matrices.txt', STATUS='OLD')
110
       5 CONTINUE
111 C
112 C
         .. Load our matrix and convert to the sparse matrix format ..
113
         READ (11, *, END=2000) MNAME
114
         WRITE(6, 4010) TRIM(MNAME)
115
         MFNAME = '/home/sven/matrices/' // TRIM(MNAME) // '.mtx'
116
         OPEN(1, FILE=MFNAME, STATUS='OLD')
117
         WRITE(6, 4020)
118
         CALL MMINFO(1, REP, FIELD, SYMM, ROWS, COLS, NNZ)
119
         IF (ROWS.NE.COLS) THEN
120
            WRITE (6, 9990)
```

```
121
            GO TO 5
122
         END IF
123
124
         N = ROWS
         LDW = N
125
126
127
         ALLOCATE (TEMP (N))
128
         ALLOCATE (RVAL (NNZ))
129
         ALLOCATE (CVAL (NNZ))
130
         ALLOCATE (IVAL (NNZ))
         ALLOCATE (INDX (NNZ))
131
132
         ALLOCATE (JNDX (NNZ))
133
         ALLOCATE (RVALO (NNZ) )
134
         ALLOCATE (JNDXO (NNZ))
135
         ALLOCATE (INDXO(N+1))
136
         CALL MMREAD (1, REP, FIELD, SYMM, ROWS, COLS, NNZ, NNZ,
137
138
                           INDX, JNDX, IVAL, RVAL, CVAL)
139
         CLOSE (1)
140 C
         .. column indices and row pointers
141
         WRITE(6, 4030)
142
         CALL COOCSR (ROWS, NNZ, RVAL, INDX, JNDX, RVALO, JNDXO, INDXO)
143
144
         DEALLOCATE (RVAL)
145
         DEALLOCATE (CVAL)
146
         DEALLOCATE (IVAL)
147
         DEALLOCATE (INDX)
         DEALLOCATE (JNDX)
148
149
150 C
151 C Preconditioning is required
152
         PREC = 0
         ICNTL(3) = PREC
153
154 C Set right hand side, b
155
         WRITE(6, 4035)
156
157
         ALLOCATE (SOLUTION (N))
158
         ALLOCATE (RHS (N) )
159
160
         OPEN(13, FILE='/home/sven/matrices/' // TRIM(MNAME)
161
                   // rhs1.mtx', STATUS='OLD', IOSTAT=FSTAT)
         IF (FSTAT.NE.0) THEN
162
163
            OPEN(13, FILE='/home/sven/matrices/' // TRIM(MNAME)
                   // '_b.mtx', STATUS='OLD', IOSTAT=FSTAT)
164
165
            IF (FSTAT.NE.0) THEN
166
                WRITE(6, 4036)
167
                SOLUTION = 1.0D+0
168
                CALL AMUX (N, SOLUTION, RHS, RVALO, JNDXO, INDXO)
169
170
                CALL MMREAD (13, REP, FIELD, SYMM, ROWS, COLS, RNNZ, N,
171
                           SOLUTION, SOLUTION, SOLUTION, RHS, SOLUTION)
172
            END IF
173
         ELSE
174
            CALL MMREAD (13, REP, FIELD, SYMM, ROWS, COLS, RNNZ, N,
175
                           SOLUTION, SOLUTION, SOLUTION, RHS, SOLUTION)
176
         END IF
177
         CLOSE (13)
         BNRM2 = DNRM2(N, RHS, 1)
178
179 C Preconditioner switch
         PREC TOL = 0.01
```

```
181
         PREC\_UPPER\_TOL = 5.0
182 7 CONTINUE
183
         RUNS = 0
         PREC TOL = PREC TOL * 10.0
184
185
          WRITE (TOL STRING, '(F5.2)') PREC TOL
186
         TOL_STRING = REPEAT('0',5 - LEN_TRIM(ADJUSTL(TOL_STRING)))
187
         + // ADJUSTL (TOL_STRING)
188
         FNAME = 'output/' // TRIM(MNAME) // '_' // TOL_STRING // '.txt'
189
         OPEN (10, FILE=FNAME, STATUS='NEW', IOSTAT=FSTAT)
190
         IF (FSTAT.NE.O) THEN
            WRITE(6, FMT=4037)
191
192
            RUNS = 100
193
            GO TO 1010
194
          END IF
195
          WRITE(10, FMT=3010) TRIM(MNAME), N, NNZ
196
          ALLOCATE (W(N, 13))
197
198
199 C Initialize data for the preconditioner
200 C
201
         WRITE(6, FMT=4040)
202
203
         ALLOCATE (ILUJA (NNZ))
204
          ALLOCATE (ILUIA (N+1))
205
          ALLOCATE (ILUA (NNZ))
          ALLOCATE (ILUIND (N))
206
207
208
          ILUJA = JNDXO
209
          ILUIA = INDXO
210
         CALL DCOPY (NNZ, RVALO, 1, ILUA, 1)
211
          CALL DGNLAMGINIT (N, ILUIA, ILUJA, ILUA, ILUMATCHING,
212
213
                              ILUORDERING, ILUDROPTOL, ILUDROPTOLS,
214
                              ILUCONDEST, ILURESTOL, ILUMAXIT, ILUELBOW,
215
                              ILULFIL, ILULFILS, ILUNRESTART,
216
                              ILUMIXEDPRECISION, ILUIND)
217
218 с
         threshold for ILU, default: 1e-2
219
         ILUDROPTOL=PREC TOL
220 c
          threshold for the approximate Schur complements, \textbf{default} \colon \text{0.1*droptol}
221 c
          ILUDROPTOLS=0.1*ILUDROPTOL
222
223
224
          ILUMIXEDPRECISION = 0
225
          CALL CPU TIME (TARRAY (1))
226
          ILUIERR=DGNLAMGFACTOR (ILUPARAM, ILUPREC, N, ILUIA, ILUJA,
227
228
                   ILUA, ILUMATCHING, ILUORDERING, ILUDROPTOL, ILUDROPTOLS,
229
                   ILUCONDEST, ILURESTOL, ILUMAXIT, ILUELBOW, ILULFIL,
230
        +
                   ILULFILS, ILUNRESTART, ILUMIXEDPRECISION, ILUIND)
231
232
         CALL CPU_TIME (TARRAY (2))
233
234
         IF (ILUIERR.EQ.-1) THEN
235
            WRITE (6,'(A)') 'Error. input matrix may be wrong.'
236
          ELSEIF (ILUIERR.EQ.-2) THEN
237
            WRITE (6,'(A)')
238
                'matrix L overflow, increase elbow and retry'
239
          ELSEIF (ILUIERR.EQ.-3) THEN
```

WRITE (6, '(A)')

```
241
            'matrix U overflow, increase elbow and retry'
242
        ELSEIF (ILUIERR.EQ.-4) THEN
243
          WRITE (6,'(A)') 'Illegal value for lfil'
        ELSEIF (ILUIERR.EO.-5) THEN
244
245
           WRITE (6,'(A)') 'zero row encountered'
246
        ELSEIF (ILUIERR.EQ.-6) THEN
247
           WRITE (6,'(A)') 'zero column encountered'
248
        ELSEIF (ILUIERR.EQ.-7) THEN
249
           WRITE (6,'(A)') 'buffers are too small'
250
        ELSEIF (ILUIERR.NE.0) THEN
251
           WRITE (6, '(A, I3)')
252
             'zero pivot encountered at step number', ILUIERR
253
        ENDIF
254
        IF (ILUIERR.NE.0) THEN
255
          WRITE(10, FMT=3032) ILUIERR
256
           GO TO 1000
        END IF
257
        WRITE (10, FMT=3020) TARRAY (2) - TARRAY (1), N,
                         DGNLAMGNNZ (ILUPARAM, ILUPREC)
260
        CALL FLUSH (10)
261
262
        WRITE(6, FMT=4050)
263 \\
264 CCCCCCCCCCCCCCCCCCCCC
                             CORS
                                          cccccccccccccccccccccccc
266
        WRITE(10, FMT=3030) 'CORS'
267
        CALLS = 0
268
    10 CONTINUE
269
270
       CALLS = CALLS + 1
        RUNS = RUNS + 1
272 C Clear everything
273
274
        CALL CORSID (ICNTL, CNTL, ISAVE, RSAVE)
275
        CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
                    INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
276
278 C Perform an iteration of the CORS method
        CALL CPU_TIME (TARRAY (1))
    20 CONTINUE
       CALL CORSAD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
282
283
                    INFO, ISAVE, RSAVE)
284
285
        IF (MVOPP.GE.MAXMVP) THEN
           CALL CPU TIME (TARRAY (2))
286
287
           WRITE (6, FMT=9020) -88
288
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)
           GO TO 30
289
290
        END IF
291
292
        IF (IACT.LT.0) THEN
           CALL CPU_TIME (TARRAY (2))
293
294
           WRITE (6, FMT=9020) INFO(1)
295
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
296
           GO TO 30
297
        END IF
298
        IF (IACT.EQ.2) THEN
300 C Perform the matrix-vector product
```

```
301
           CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
302
           CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
303
           MVOPP = MVOPP + 1
304
           GO TO 20
        END IF
305
306
307
        IF (IACT.EQ.3) THEN
308 C Perform the preconditioning operation
309
           CALL DCOPY (N, W(1, LOCZ), 1, W(1, LOCY), 1)
310
           GO TO 20
        END IF
311
312
        CALL CPU_TIME (TARRAY (2))
313
314
        CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
315
316
        IF (ISNAN (TEMP (1))) THEN
317
           INFO(1) = -99
318
           WRITE (6, FMT=9020) INFO(1)
319
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
320
           GO TO 30
        END TE
321
322
323
        CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
324
325 C Solution found
        WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
326
327
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
328
        IF (CALLS.LE.5) THEN
329
330
           GO TO 10
        END IF
331
332
     30 CONTINUE
333
336 CCCCCCCCCCCCCCCCCC
                             BICOR
                                         WRITE(10,3030) 'BiCOR'
339
340
        CALLS = 0
341 110 CONTINUE
        CALLS = CALLS + 1
342
        RUNS = RUNS + 1
343
344 C Clear everything
345
346
        CALL BICORID (ICNTL, CNTL, ISAVE, RSAVE)
347
        CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
348
                    INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
349
350\ {
m C} Perform an iteration of the BICOR method
351
352
        CALL CPU TIME (TARRAY (1))
353
    120 CONTINUE
354
        CALL BICORAD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
355
                    INFO, ISAVE, RSAVE)
356
        IF (MVOPP.GE.MAXMVP) THEN
357
358
           CALL CPU TIME (TARRAY (2))
359
           WRITE (6, FMT=9020) -88
```

CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)

```
GO TO 130
361
         END IF
362
363
         IF (IACT.LT.0) THEN
364
            CALL CPU TIME (TARRAY (2))
365
366
            WRITE (6, FMT=9020) INFO(1)
367
            CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
368
            GO TO 130
369
         END IF
370
         IF (IACT.EQ.2) THEN
371
372 C Perform the matrix-vector product
            CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
            CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
374
375
            MVOPP = MVOPP + 1
376
            GO TO 120
377
         END IF
         IF (IACT.EQ.3) THEN
380\ {
m C} Perform the preconditioning operation
            CALL DCOPY(N, W(1, LOCZ), 1, W(1, LOCY), 1)
382
            GO TO 120
383
         END IF
384
         IF (IACT.EQ.4) THEN
385
386 C Perform the matrix-vector product
            CALL ATMUX(N, W(1, LOCZ), TEMP, RVALO, JNDXO, INDXO)
            CALL DGNLAMGTSOL (ILUPARAM, ILUPREC, TEMP, W(1,LOCY), N)
388
389
           MVOPP = MVOPP + 1
390
            GO TO 120
         END IF
391
392
393
         IF (IACT.EO.5) THEN
394 C Perform the preconditioning operation
395
            CALL DCOPY (N, W(1, LOCZ), 1, W(1, LOCY), 1)
396
            GO TO 120
397
         END IF
398
399
         CALL CPU_TIME (TARRAY (2))
400
401
         CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,2), TEMP, N)
         IF (ISNAN (TEMP (1))) THEN
402
           INFO(1) = -99
403
            WRITE (6, FMT=9020) INFO(1)
404
405
            CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
406
            GO TO 130
         END IF
407
408
         CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
409
410
411 C Solution found
412
         WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
         IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
413
414
         IF (CALLS.LE.5) THEN
415
416
            GO TO 110
417
         END IF
418
     130 CONTINUE
```

```
WRITE(10,3030) 'BiCG-stab'
425
426
427 210 CONTINUE
428
        CALLS = CALLS + 1
429
        RUNS = RUNS + 1
430 C Clear everything
431
432
        CALL MI26ID (ICNTL, CNTL, ISAVE, RSAVE)
433
        CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
434
                     INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
435
436 C Perform an iteration of the BICG-STAB method
438
        CALL CPU TIME (TARRAY (1))
439
    220 CONTINUE
440
        CALL MI26AD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
441
                     INFO, ISAVE, RSAVE)
442
443
        IF (MVOPP.GE.MAXMVP) THEN
444
           CALL CPU TIME (TARRAY (2))
445
           WRITE (6, FMT=9020) -88
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)
446
447
           GO TO 230
        END IF
448
449
450
        IF (IACT.LT.0) THEN
451
           CALL CPU TIME (TARRAY (2))
452
           WRITE (6, FMT=9020) INFO(1)
453
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
454
           GO TO 230
455
        END IF
456
457
        IF (IACT.EQ.2) THEN
458 C Perform the matrix-vector product
           CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
460
           CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
461
           MVOPP = MVOPP + 1
           GO TO 220
462
        END IF
463
464
465
        IF (IACT.EO.3) THEN
466 C Perform the preconditioning operation
           CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
467
468
           GO TO 220
        END IF
469
470
471
        CALL CPU_TIME (TARRAY (2))
472
473
        CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
474
        IF (ISNAN (TEMP (1))) THEN
475
           INFO(1) = -99
476
           WRITE (6, FMT=9020) INFO(1)
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
477
478
           GO TO 230
479
        END IF
```

```
481
        CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
482
483 C Solution found
        WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
484
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
485
486
487
        IF (CALLS.LE.5) THEN
488
          GO TO 210
489
        END IF
490
    230 CONTINUE
491
494 CCCCCCCCCCCCCCCCCCCccccc
                                BICG
                                           ccccccccccccccccccccc
WRITE(10,3030) 'BiCG'
497
       CALLS = 0
499 310 CONTINUE
     CALLS = CALLS + 1
500
       RUNS = RUNS + 1
502 C Clear everything
503
504
       CALL MI25ID (ICNTL, CNTL, ISAVE, RSAVE)
505
       CALL CLEARALL (IACT, N, W, LDW, LOCY2, LOCZ2, RESID, ICNTL, CNTL,
                    INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
506
507
508 C Perform an iteration of the method
510
        CALL CPU_TIME (TARRAY (1))
    320 CONTINUE
      CALL MI25AD (IACT, N, W, LDW, LOCY2, LOCZ2, RESID, ICNTL, CNTL,
512
513
                    INFO, ISAVE, RSAVE)
514
515
        IF (MVOPP.GE.MAXMVP) THEN
516
          CALL CPU TIME (TARRAY (2))
517
           WRITE (6, FMT=9020) -88
518
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)
519
          GO TO 330
520
        END IF
521
        IF (IACT.LT.0) THEN
522
523
          CALL CPU_TIME (TARRAY (2))
524
           WRITE (6, FMT=9020) INFO(1)
525
          CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
          GO TO 330
526
        END IF
527
528
        IF (IACT.EQ.2) THEN
530 C Perform the matrix-vector products
531
          CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1, LOCZ2(1)),
532
                         TEMP, N)
533
           CALL AMUX(N, TEMP, W(1, LOCY2(1)), RVALO, JNDXO,
534
                   INDXO)
535
           CALL ATMUX(N, W(1,LOCZ2(2)), TEMP, RVALO, JNDXO,
536
                   INDXO)
           CALL DGNLAMGTSOL (ILUPARAM, ILUPREC, TEMP,
537
538
                         W(1, LOCY2(2)), N)
          MVOPP = MVOPP + 2
540
           GO TO 320
```

```
END IF
541
542
543
        IF (IACT.EO.3) THEN
544 C Perform the preconditioning operations
           CALL DCOPY(N, W(1,LOCZ2(1)), 1, W(1,LOCY2(1)), 1)
545
546
           CALL DCOPY(N, W(1,LOCZ2(2)), 1, W(1,LOCY2(2)), 1)
547
          GO TO 320
548
        END IF
549
550
        CALL CPU_TIME (TARRAY (2))
551
552
        CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
553
        IF (ISNAN (TEMP (1))) THEN
554
          INFO(1) = -99
555
           WRITE (6, FMT=9020) INFO(1)
556
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
557
558
559
        CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
560
561
562 C Solution found
563
        WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
564
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
565
566
        IF (CALLS.LE.5) THEN
567
          GO TO 310
568
        END IF
569
570 330 CONTINUE
573 CCCCCCCCCCCCCCCCCCCCC
                              CGS
                                         575
        WRITE(10,3030) 'CGS'
576
577
        CALLS = 0
578 410 CONTINUE
        CALLS = CALLS + 1
        RUNS = RUNS + 1
581 C Clear everything
582
583
        CALL MI23ID (ICNTL, CNTL, ISAVE, RSAVE)
        CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
584
585
                    INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
586
587 C Perform an iteration of the BICG-STAB method
        CALL CPU TIME (TARRAY (1))
589
590
    420 CONTINUE
591
        CALL MI23AD (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
592
                    INFO, ISAVE, RSAVE)
593
594
        IF (MVOPP.GE.MAXMVP) THEN
          CALL CPU TIME (TARRAY (2))
595
596
           WRITE (6, FMT=9020) -88
597
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)
598
           GO TO 430
599
        END IF
```

```
IF (IACT.LT.0) THEN
601
602
          CALL CPU TIME (TARRAY (2))
          WRITE (6, FMT=9020) INFO(1)
603
          CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
604
605
          GO TO 430
606
        END IF
607
608
        IF (IACT.EQ.2) THEN
609 C Perform the matrix-vector product
           CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
           CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
611
612
          MVOPP = MVOPP + 1
          GO TO 420
613
614
        END IF
615
616
        IF (IACT.EQ.3) THEN
617 C Perform the preconditioning operation
           CALL DCOPY (N, W(1, LOCZ), 1, W(1, LOCY), 1)
619
           GO TO 420
        END IF
620
621
622
        CALL CPU_TIME (TARRAY (2))
623
624
        CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,2), TEMP, N)
625
        IF (ISNAN (TEMP (1))) THEN
626
          INFO(1) = -99
627
           WRITE (6, FMT=9020) INFO(1)
           CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
628
629
           GO TO 430
630
        END IF
631
        CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
632
633
634 C Solution found
        WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
635
636
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
637
638
        IF (CALLS.LE.5) THEN
639
          GO TO 410
640
        END IF
641
642 430 CONTINUE
645 CCCCCCCCCCCCCCCCCCCCCccccc
                                GMRES
                                            WRITE(10,3030) 'GMRES'
648
       CALLS = 0
649
650
        M = 100
        LDH = M+1
651
652
        ALLOCATE (H (LDH, M+2))
653
        DEALLOCATE (W)
654
        ALLOCATE (W (LDW, M+7))
655 510 CONTINUE
        CALLS = CALLS + 1
        RUNS = RUNS + 1
658 C Clear everything
        CALL MI24ID (ICNTL, CNTL, ISAVE, RSAVE, LSAVE)
```

```
661
         CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
662
                       INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
663
664 C Perform an iteration of the method
665
666
         CALL CPU_TIME (TARRAY (1))
667
     520 CONTINUE
668
         CALL MI24AD (IACT, N, M, W, LDW, LOCY, LOCZ, H, LDH, RESID,
669
                        ICNTL, CNTL, INFO, ISAVE, RSAVE, LSAVE)
670
671
         IF (MVOPP.GE.MAXMVP) THEN
672
            CALL CPU_TIME (TARRAY (2))
673
            WRITE (6, FMT=9020) -88
674
            CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, -88)
675
676
         END IF
677
678
         IF (IACT.LT.0) THEN
679
            CALL CPU TIME (TARRAY (2))
680
            WRITE (6, FMT=9020) INFO(1)
681
            CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
682
            GO TO 530
683
         END IF
684
         IF (IACT.EQ.2) THEN
685
686 C Perform the matrix-vector products
            CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
            CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
688
689
            MVOPP = MVOPP + 1
690
            GO TO 520
         END IF
691
692
693
         IF (IACT.EQ.3) THEN
694 C Perform the preconditioning operations
695
            CALL DCOPY (N, W(1, LOCZ), 1, W(1, LOCY), 1)
696
            GO TO 520
697
         END IF
698
699
         CALL CPU_TIME (TARRAY (2))
700
701
         CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,2), TEMP, N)
         IF (ISNAN (TEMP (1))) THEN
702
            INFO(1) = -99
703
704
            WRITE (6, FMT=9020) INFO(1)
705
            CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
706
            GO TO 530
         END IF
707
708
         CALL SAVERESULTS (TARRAY, INFO(2), MVOPP, INFO(1))
709
710
711 C Solution found
712
         WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
713
         IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
714
715
         IF (CALLS.LE.5) THEN
716
            GO TO 510
         END IF
717
718
     530 CONTINUE
```

```
DEALLOCATE (H)
721
722
724 CCCCCCCCCCCCCCCCCCCCccc
                           BICGSTAB1
                                           727 600 CONTINUE
728
       L = L + 1
729
        WRITE(10,3031) L
730
       CALLS = 0
        ALLOCATE (WORK (N, 3+2*(L+1)))
731
732
       LDRW = (L+1) * (3+2*(L+1))
733
       LDWB = N*(3+2*(L+1))
734
        ALLOCATE (RWORK (L+1, 3+2*(L+1)))
735
        ALLOCATE (IWORK (L+1))
736 610 CONTINUE
        CALLS = CALLS + 1
        RUNS = RUNS + 1
739
       MXMV = MIN(2 * N, MAXMVP)
740
741
       TOL = ETA
742 C Clear everything
743
       CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
744
                    INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
745
746 C Perform an iteration of the method
        CALL CPU TIME (TARRAY (1))
748
        CALL BISTBL(L, N, W(1,2), W(1,1), MV, PRECSOLVE, TOL,
749
750
                  MXMV, WORK, LDWB, RWORK, LDRW, IWORK, INFO, NNZ,
                  RVALO, JNDXO, INDXO, ILUPARAM, ILUPREC, TEMP, BNRM2)
751
752
        IF (INFO(1).NE.0) THEN
753
754
           CALL CPU TIME (TARRAY (2))
755
           WRITE (6, FMT=9020) INFO(1)
           CALL SAVERESULTS (TARRAY, L * INFO(2), MXMV, INFO(1))
756
757
           GO TO 630
758
        END IF
759
760
        CALL CPU_TIME (TARRAY (2))
761
        CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1,2), TEMP, N)
762
763
        IF (ISNAN (TEMP (1))) THEN
764
          INFO(1) = -99
765
           WRITE (6, FMT=9020) INFO(1)
           CALL SAVERESULTS (TARRAY, L * INFO(2), MXMV, INFO(1))
766
767
          GO TO 630
768
        END IF
769
770
        CALL SAVERESULTS (TARRAY, L * INFO(2), MXMV, INFO(1))
771
772 C Solution found
        WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
773
774
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
775
776
        IF (CALLS.LE.5) THEN
777
          GO TO 610
        END IF
778
    630 CONTINUE
```

```
782
        DEALLOCATE (WORK)
783
        DEALLOCATE (RWORK)
        DEALLOCATE (IWORK)
784
785
786
        IF (L.LT.3) THEN
787
          GO TO 600
788
        END IF
789
791 CCCCCCCCCCCCCCCCCCCCccccc
                             OMR
703
        WRITE(10,3030) 'OMR'
794
795
        CALLS = 0
796
        MAXVW = 1
797
        MAXPQ = 1
798
        MVEC = MAXPQ + MAXVW
799
        M = MAXPO + MAXVW + 2
800
        L = N
801
802
        ALLOCATE (WORK (M, 8*M+18))
803
        ALLOCATE (IWORK2 (6, L+2))
804
        ALLOCATE (IWORK3 (M, 13))
805
        DEALLOCATE (W)
        ALLOCATE (W(LDW, 5*MVEC+3))
806
807
    710 CONTINUE
808
        CALLS = CALLS + 1
809
810
        RUNS = RUNS + 1
811 C Clear everything
        CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
812
813
                   INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
814
815
        CALL DCOPY(N, RHS, 1, W(1,2), 1)
816
        RESID = 1.0
817
        TOL = ETA
818
        MAXVW = 1
819
        MAXPO = 1
820
        MVEC = MAXPQ + MAXVW
821
        M = MAXPQ + MAXVW + 2
        T. = N
822
823
824 C Perform an iteration of the method
825
826
        CALL CPU TIME (TARRAY (1))
827
828
        CALL DUCPL (LDW, N, L, MAXPQ, MAXVW, M, MVEC, RESID, WORK, IWORK2,
829
                         IWORK3, W, TOL, INFO)
830
831
        IF (MVOPP.GE.MAXMVP) THEN
832
           CALL CPU TIME (TARRAY (2))
833
           WRITE (6, FMT=9020) -88
834
           CALL SAVERESULTS (TARRAY, L, MVOPP, -88)
835
           INFO(2) = -1
836
           CALL DUCPL (LDW, N, L, MAXPQ, MAXVW, M, MVEC, RESID, WORK,
837
                          IWORK2, IWORK3, W, TOL, INFO)
838
           GO TO 730
        END IF
839
```

```
IF (INFO(2).EQ.1) THEN
841
842\ {\mbox{C}} Perform the matrix-vector products
          CALL DGNLAMGSOL (ILUPARAM, ILUPREC, W(1, INFO(3)), TEMP, N)
844
           CALL AMUX(N, TEMP, W(1, INFO(4)), RVALO, JNDXO, INDXO)
845
          MVOPP = MVOPP + 1
846
           GO TO 720
847
        END TE
848
849
        IF (INFO(2).EQ.2) THEN
850 C Perform the transpose matrix-vector products
           CALL ATMUX(N, W(1, INFO(3)), TEMP, RVALO, JNDXO, INDXO)
852
           CALL DGNLAMGTSOL (ILUPARAM, ILUPREC, TEMP, W(1, INFO(4)), N)
          MVOPP = MVOPP + 1
853
           GO TO 720
854
855
        END IF
856
        IF (INFO(1).NE.0) THEN
857
           CALL CPU_TIME (TARRAY (2))
859
           WRITE (6, FMT=9020) INFO(1)
860
           CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
861
           GO TO 730
862
        END IF
863
864
        CALL CPU TIME (TARRAY (2))
865
        CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,1), TEMP, N)
866
867
        IF (ISNAN (TEMP (1))) THEN
           INFO(1) = -99
868
869
           WRITE (6, FMT=9020) INFO(1)
870
          CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
871
           GO TO 730
872
        END IF
873
        CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
874
875
876 C Solution found
        WRITE (6, FMT=9000) L, (TEMP(I), I=1, NPRT)
        IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
879
880
        IF (CALLS.LE.5) THEN
881
          GO TO 710
        END IF
882
883
    730 CONTINUE
884
885
        DEALLOCATE (WORK)
886
887
        DEALLOCATE (IWORK2)
888
        DEALLOCATE (IWORK3)
891 CCCCCCCCCCCCCCCCCCccccc
                                 TFQMR
                                             cccccccccccccccccccc
WRITE(10,3030) 'TFQMR'
893
894
895
        CALLS = 0
896
897
        DEALLOCATE (W)
        ALLOCATE (W(LDW, 13))
898
900 810 CONTINUE
```

```
901
         CALLS = CALLS + 1
         RUNS = RUNS + 1
902
903 C Clear everything
904
905
         CALL CLEARALL (IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
906
                       INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
907
908
         CALL DCOPY(N, RHS, 1, W(1,2), 1)
909
         L = N
910
         TOL = ETA
911
912 C Perform an iteration of the method
913
914
         CALL CPU TIME (TARRAY (1))
915
     820 CONTINUE
916
         CALL DUTFX (LDW, N, L, W, TOL, INFO)
917
918
         IF (MVOPP.GE.MAXMVP) THEN
919
            CALL CPU TIME (TARRAY (2))
920
            WRITE (6, FMT=9020) -88
921
            CALL SAVERESULTS (TARRAY, L, MVOPP, -88)
922
            INFO(2) = -1
923
            CALL DUTFX (LDW, N, L, W, TOL, INFO)
924
            GO TO 830
925
         END IF
926
927
         IF (INFO(2).EQ.1) THEN
928 C Perform the matrix-vector products
929
            CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1, INFO(3)), TEMP, N)
930
            CALL AMUX(N, TEMP, W(1, INFO(4)), RVALO, JNDXO, INDXO)
931
            MVOPP = MVOPP + 1
            GO TO 820
932
933
         END IF
934
935
         IF (INFO(1).NE.0) THEN
936
            CALL CPU TIME (TARRAY (2))
937
            WRITE (6, FMT=9020) INFO(1)
938
            CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
939
            GO TO 830
940
         END IF
941
         CALL CPU_TIME (TARRAY (2))
942
943
         CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,1), TEMP, N)
944
945
         IF (ISNAN (TEMP (1))) THEN
            INFO(1) = -99
946
947
            WRITE (6, FMT=9020) INFO(1)
948
            CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
            GO TO 830
949
950
         END IF
951
952
         CALL SAVERESULTS (TARRAY, L, MVOPP, INFO(1))
953
954 C Solution found
955
         WRITE (6, FMT=9000) L, (TEMP(I), I=1, NPRT)
956
         IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
957
958
         IF (CALLS.LE.5) THEN
959
            GO TO 810
960
         END IF
```

```
961
962 830 CONTINUE
963
964 1000 CONTINUE
         CLOSE (10)
966 C Deallocate everything
967 C Deallocate data for the preconditioner
         IF (ILUIERR.EQ.0) THEN
969
            CALL DGNLAMGDELETE (ILUPARAM, ILUPREC)
970
         END IF
971
972
         DEALLOCATE (ILUIA)
973
         DEALLOCATE (ILUJA)
974
         DEALLOCATE (ILUA)
         DEALLOCATE (ILUIND)
975
976
977
         DEALLOCATE (W)
979 1010 CONTINUE
980
981
         IF (PREC_TOL.LT.PREC_UPPER_TOL) THEN
982
            IF (RUNS.GT.10) THEN
983
               GO TO 7
984
            END IF
985
         END IF
986
987
         DEALLOCATE (TEMP)
         DEALLOCATE (SOLUTION)
988
989
         DEALLOCATE (RHS)
990
         DEALLOCATE (RVALO)
991
         DEALLOCATE (JNDXO)
         DEALLOCATE (INDXO)
992
993
994
         GO TO 5
995 2000 CONTINUE
         CLOSE (11)
997
         STOP
998 3010 FORMAT ( '% Matrix: name,
                                              N,
                                                        NNZ', / A18,
      + ', ', I8, ', ', I10 )
1000 3020 FORMAT ( '% Prec:
                                                        NNZ', / F18.3,
     +
1001
                 ', ', I8,
                 ', ', I10,
1002
                 / '% Results: time,
1003
                                            iter, m-v prod, error')
1004 3030 FORMAT ( '% ' A)
1005 3031 FORMAT ( '% BICGSTAB(', I1, ')')
1006 3032 FORMAT ( '% ' I4)
1007 4010 FORMAT (' New matrix: ', A)
1008 4020 FORMAT (' Reading matrix ' )
1009 4030 FORMAT (' Converting to CSR ')
1010 4035 FORMAT (' Forming RHS ')
1011 4036 FORMAT (' No RHS file found ')
1012 4037 FORMAT (' Already done ')
1013 4040 FORMAT (' Building preconditioner ')
1014 4050 FORMAT (' Starting solvers ')
1015 9000 FORMAT (/ ' Solution found', / I6, ' iterations required ',
1016 + //' Solution = ', / (1P, 5D10.2))
1017 9010 FORMAT (' Warning: INFO( 1 ) = ', I3, ' on exit ')
1018 9020 FORMAT (' Error return: INFO( 1 ) = ', I3, ' on exit ')
1019 9990 FORMAT (' MATRIX NOT SQUARE ')
         END PROGRAM TEST
```

```
1021
1022 C Subroutines used by BiCGSTAB(ell)
1023
          SUBROUTINE MV(N, X, Y, NNZ, RVALO, JNDXO,
         + INDXO, ILUPARAM, ILUPREC, TEMP)
1024
          INTEGER N
1025
1026
          DOUBLE PRECISION X(N), Y(N)
1027
          DOUBLE PRECISION RVALO(NNZ), TEMP(N)
1028
          INTEGER INDXO(N+1), JNDXO(NNZ)
1029
          INTEGER * 8 ILUPARAM, ILUPREC
1030
          EXTERNAL AMUX, DGNLAMGSOL
1031
             CALL DGNLAMGSOL (ILUPARAM, ILUPREC, X, TEMP, N)
1032
          CALL AMUX (N, TEMP, Y, RVALO, JNDXO, INDXO)
1033
          END SUBROUTINE MV
1034
          SUBROUTINE PRECSOLVE(N, X)
1035
1036
          INTEGER N
1037
          DOUBLE PRECISION X(N)
1038 C
          Right precontitioning. Do nothing
          END SUBROUTINE PRECSOLVE
1039
1040
1041\ {\text C} Subroutine to save all results
1042
          SUBROUTINE SAVERESULTS (TARRAY, ITER, MVOPP, ERROR)
1043
          REAL TARRAY (2)
1044
          INTEGER ITER, MVOPP, ERROR
1045
          WRITE(10,100) TARRAY(2)-TARRAY(1), ITER, MVOPP, ERROR
1046
          CALL FLUSH(10)
1047
          MVOPP = 0
1048
          RETURN
     100 FORMAT (F18.3, ', ', I8, ', ', I10,
1049
1050
       + ', ', I3)
          END SUBROUTINE SAVERESULTS
1051
```

E Implementation of the data analysis tool

```
1 #!/usr/bin/env pvthon
                                                                                                  61
                                                                                                             trv:
2 # -*- coding: UTF-8 -*-
                                                                                                   62
                                                                                                                 matrix file list, dummy = MatrixFileFetcher.fetch()
                                                                                                   63
                                                                                                                 matrix file list = matrix file list \
4 import os
                                                                                                                 if (self.options.n <= 0 or self.options.n > len(matrix file list)) \
                                                                                                  64
5 import sys
                                                                                                   65
                                                                                                                 else matrix file list[0:self.options.n]
6 import scipy
                                                                                                   66
                                                                                                             except IOError:
 7 import matplotlib.pyplot as pyplot
                                                                                                  67
                                                                                                                 matrix file list = []
8 from optparse import OptionParser
                                                                                                  68
                                                                                                              for filename in filename list:
9 import shutil
                                                                                                   69
                                                                                                                 matrix, sep, prec_tol = filename.rpartition('_')
                                                                                                   70
11 import TableToLatex
                                                                                                                     prec_tol = float(prec_tol.rpartition('.')[0])
                                                                                                  71
12 import MatrixFileFetcher
                                                                                                   72
                                                                                                                 except ValueError:
                                                                                                   73
                                                                                                                     print prec tol
14 class Parser (object):
                                                                                                  74
                                                                                                                      self.quit on error()
      ''' The parser class that parses the matrix files of a certain
                                                                                                   75
                                                                                                                 if prec_tol != self.prec_tol or (matrix_file_list and matrix not in
      preconditioner tolerance'''
                                                                                                                     matrix file list):
17
                                                                                                   76
                                                                                                                      if matrix file list and matrix not in matrix file list:
     TIMETOL = 0.05
18
                                                                                                   77
                                                                                                                          print 'Matrix not in matrix file list: ', matrix
      OFFTOL = 0.1
19
                                                                                                   78
                                                                                                                      continue
20
      UPPERTOL = 150.0
                                                                                                   70
                                                                                                                 self.current = scipy.zeros([self.solver used amount,
      MATRIXMODE = 4
                                                                                                                                              Parser.COLUMNS + 11)
91
                                                                                                   80
22
      COLUMNS = 4
                                                                                                   81
                                                                                                                 self.mode = 0
23
      MAX MVPS = 20000
                                                                                                   82
                                                                                                                 self.solver = 0
24
                                                                                                   83
                                                                                                                 self.skip = False
25
      def __init__(self, prec_tol, prec_tols):
                                                                                                   84
                                                                                                                 self.matrix_file = self.prefix+'/'+filename
          "" constructor ""
                                                                                                                 matrix file = open(self.matrix file)
26
                                                                                                   85
27
          self.mode = 0
                                                                                                   86
                                                                                                                 lines = matrix_file.readlines()
28
          self.solver = 0
                                                                                                   87
                                                                                                                 matrix file.close()
          self.options = self.set_options()
29
                                                                                                   88
                                                                                                                 for line in lines:
          self.solver_dict = ['CORS', 'BiCOR', 'BiCGSTAB', 'BiCG',
                                                                                                                     if line.startswith('%'):
30
                                                                                                   89
               'CGS', 'GMRES(100)', 'BiCGSTAB(2)', 'BiCGSTAB(3)', 'OMR', 'TFOMR']
                                                                                                                          # line is a comment
31
                                                                                                   90
          self.solver_used_amount = len(self.solver_dict)
                                                                                                   91
                                                                                                                          self.mode += 1
32
          self.exclude = sorted(self.options.exclude, reverse=True)
                                                                                                                          if self mode > Parser MATRIXMODE.
33
                                                                                                   92
                                                                                                                              # read the data of the previous solver into self.current
3/1
          for i in self.exclude:
                                                                                                   93
35
              self.solver dict.pop(i)
                                                                                                   94
                                                                                                                              self.read()
          self.solver amount = len(self.solver dict)
36
                                                                                                   95
                                                                                                                             self.solver += 1
37
          self.prec tol = prec tol
                                                                                                                          self.matrix parser.clear()
38
          self.prec tols = prec tols
                                                                                                   97
                                                                                                                          continue
39
          self.prefix = './test'
                                                                                                   98
                                                                                                                      elif self.mode == 1:
          self.matrix file = "
40
                                                                                                   99
                                                                                                                          # line with the matrix name
41
          self.matrix parser = MatrixParser(Parser.COLUMNS)
                                                                                                  100
                                                                                                                          spline = self.split(line)
49
          self.matrix name = ''
                                                                                                  101
                                                                                                                          self.matrix_name = spline[0]
43
          self.matrix_number = 0
                                                                                                                          self.current_latex_list = [self.matrix_name]
                                                                                                  102
44
          self.data = SolverData(self.solver_amount)
                                                                                                  103
                                                                                                                          if self.options.verbose:
45
          self.current = scipy.zeros([self.solver_used_amount,
                                                                                                  104
                                                                                                                              print 'Read: {}: {}'.format(self.matrix number + 1,
46
                                      Parser.COLUMNS + 11)
                                                                                                  105
                                                                                                                                                self.matrix name)
47
          self.plotting_pattern = ['b-', 'g--', 'r-.', 'c:', 'm-', 'y--',
                                                                                                                      elif self.mode >= Parser.MATRIXMODE:
                                                                                                  106
                                    'k-.', 'b:', 'g-', 'r--']
48
                                                                                                  107
                                                                                                                          # line contains solver data
49
          self.skip = False
                                                                                                  108
                                                                                                                          spline = self.split(line)
          self.rerun = ''
50
                                                                                                  109
                                                                                                                          self.matrix_parser.add(spline)
          self.time = 0
51
                                                                                                  110
                                                                                                                      if self.skip:
52
                                                                                                  111
                                                                                                                         break
53
          self.latex_list = []
                                                                                                  112
                                                                                                                 if self.skip:
          self.current_latex_list = []
54
                                                                                                  113
                                                                                                                     continue
55
          self.first = True
                                                                                                  114
                                                                                                                 self.read()
56
                                                                                                  115
                                                                                                                 self.write time to file()
      def run(self):
57
                                                                                                  116
                                                                                                                 self.add()
          "" run the parser ""
                                                                                                  117
                                                                                                             self.draw plot()
59
          filename list = os.listdir(self.prefix)
                                                                                                  118
                                                                                                             self.draw latex tables()
60
          filename_list = sorted(filename_list, key=str.lower)
                                                                                                  119
                                                                                                             self.draw table()
```

```
120
       def split(self, line):
121
122
           ''' separate the data on each line '''
           spline = line.split(',')
123
           for i in range(len(spline)):
124
125
               spline[i] = spline[i].strip()
126
           return spline
127
128
       def read(self):
           "" read the data for one parser ""
129
           if self.solver in self.exclude:
130
131
               return
132
133
           data = self.matrix parser.read()
134
135
           times = data[:, 0]
           self.time += sum(times)
136
137
           length = len(times)
138
           if length == 0:
               print 'Length is 0: {}'.format(self.matrix name)
130
140
                self.skip = True
141
                return
142
143
           average = float(sum(times)) / length
144
145
           if self.matrix parser.fail:
146
                excl = len([item for item in self.exclude if item < self.solver])</pre>
147
                err = int(data[0, 3])
148
                # 1 is breakdown, 2 is iterations, 3 is NAN
               error_type = 2 if (err < -3 and err > -99) \
149
                   or ((self.solver == 6 or self.solver == 7) and err == 1) \
150
                   or ((self.solver == 8 or self.solver == 9) and err == 4) \
151
                   else (3 if err == -99 else 1)
152
                self.data.solver[self.solver - excl].error(error_type)
153
154
                self.current[self.solver, 3] = data[0, 3]
155
                self.write_to_current(average, data, error_type)
156
                return
157
158
           # check the time values for validity
159
           for value in times:
160
               if value < Parser.TIMETOL:</pre>
                   print 'Time too short: {}, {}, {}'.format(value,
161
                       average, self.matrix_name)
162
163
                    if not self.skip:
164
                       self.skip = True
165
                        self. move matrix ('small')
                       self. move results ('small')
166
167
                if value > (1.0 + Parser.OFFTOL) * average:
                   print 'Result not accurate enough: {}, {}, {}'\
168
169
                    .format(value, average, self.matrix_name)
170
                    length -= 1
171
                    average = float(average * (length + 1)) / length
172
173
           self.write_to_current(average, data)
174
175
       def write to current(self, average, data, error=None):
           "" write the data to self.current ""
176
           self.current[self.solver, 0] = average
177
           self.current[self.solver, 1] = data[0, 1]
178
179
           self.current[self.solver, 2] = data[0, 2]
```

```
181
           if error is None:
182
               self.current latex list.append('')
            elif self.solver not in self.exclude:
183
                self.current latex list.append(
184
                    '\\colorbox{yellow}{iterations}' if error == 2 else \
185
                    ('\\colorbox{magenta}{NAN}' if error == 3 else \
186
187
                    '\\colorbox{red}{breakdown}'))
188
189
       def add(self):
190
            "" add the data for the current matrix to self.data usning the
               ratio method '''
191
192
           if self.options.restriction is not None and not \
193
                    eval(str(self.current[int(self.options.restriction[0]), 3]) \
194
                    + self.options.restriction[1]):
195
                return
196
            for i in range(3):
197
               self.ratio(i)
198
           if not self.skip:
               self.matrix_number += 1
199
                self.latex_list.append(self.current_latex_list)
200
201
                print 'Added: {}: {}'.format(self.matrix_number,
202
                                              self.matrix name)
203
204
       def ratio(self, column):
            "" calculate the ratio and add it to self.data ""
205
206
            invalid_runs = sorted([item for item in range(self.solver_used_amount) \
207
                            if self.current[item, 3] != 0 or item in self.exclude],
208
                            reverse = True)
209
           stat = self.current[:, column]
           valid runs = list(stat)
210
           for i in invalid runs:
211
212
               valid_runs.pop(i)
213
           if valid runs == []:
214
                if column == 1:
215
                   print 'No valid runs at all: {}'.format(self.matrix name)
216
                    if self.prec tol == self.prec tols[0]:
217
                        self. move matrix('bad')
218
                        self._move_results('bad')
219
                        self.skip = True
220
                winner = 1
991
           0160.
222
               winner = min(valid_runs)
223
            i = 0
224
           latex list = {}
225
            # calculate the ratios of all used solvers and add them where needed
            for i in range(self.solver used amount):
226
227
               if i in self.exclude:
228
                    continue
                if self.current[i, 3] != 0:
229
230
                    ratio = Parser.UPPERTOL
231
                    if column == 0 and self.options.verbose:
232
                        print 'Failed method: {}, {}'.format(self.matrix_name,
233
234
                    elif column == 2 and (self.current[i, 3] == -88 or \
235
                            (self.current[i, 3] == 1 and (i == 6 or i == 7))) and \setminus
                            self.current[i, column] < 20 * winner and \
236
                            self.current[i, column] >= Parser.MAX MVPS:
237
238
                        if self.options.verbose:
230
                            print 'Max runs not enough: {}, {}, {}'.format(\
```

self.current[self.solver, 3] = data[0, 3]

```
240
                               self.matrix_name, i, winner,
241
                               self.current[i, column])
242
                       self.rerun += '{!s}\n{:d}\n{:d}\n{:d}\n'.format(\
                           self.matrix name, i, self.prec tol, int(winner))
243
244
               else:
245
                   ratio = float(stat[i]) / winner
246
                   if ratio >= Parser.UPPERTOL:
247
                       print 'Ratio too high: {}, {}, {}, {}'.format(stat[i],
248
                           winner, self.matrix_name, i, self.prec_tol)
249
                       print stat
250
                       self.quit_on_error()
251
                   if column == 2 and stat[i] > Parser.MAX_MVPS:
252
                       print 'Solver converged with more than {} mvps: {}, \
253
                           {}'.format(Parser.MAX MVPS, stat[i], self.matrix name)
254
               self.data.solver[j].append(ratio, column)
255
               latex list[j] = ratio
               j += 1
256
257
           if column == 0:
258
               sorted latex list = sorted(latex list, key=latex list.get)
               for i, item in enumerate(sorted latex list):
250
260
                   if latex list[item] != Parser.UPPERTOL:
261
                       self.current_latex_list[item+1] = ('\\colorbox{green!'+\
262
                           str(int(100/len(latex_list)*(len(latex_list)-i)))+\
263
                            '!black}{'+str(i+1)+'}')
264
                       #print self.current latex list[item]
265
266
       def draw_latex_tables(self):
267
           "" draw a latex table of all the errors ""
268
           tex parser = TableToLatex.TableToLatex()
269
           header_list = list(self.solver_dict)
           header list.insert(0, 'matrix name')
270
           tex parser.set header(header list,
271
               '|p{100px}|'+ 'p{65px}|'*(len(header_list)-1))
272
273
           tex parser.add package ('xcolor')
274
           tex parser.set table(self.latex list)
           tex parser.make('table' + str(self.prec tol))
275
276
           tex parser = TableToLatex.TableToLatex()
277
           header list = ['Solver', 'breakdown', 'iterations', 'NAN']
278
           tex_parser.set_header(header_list)
279
           table = []
280
           for i in range(self.solver amount):
               table.append([self.solver_dict[i],
281
                             str(self.data.solver[i].errors),
282
                             str(self.data.solver[i].iter_errors),
283
284
                             str(self.data.solver[i].nan errors)])
           tex_parser.use_separator(False)
285
286
           tex_parser.set_table(table)
287
           tex_parser.set_caption('Failures with a perconditioner tolerance of '\
               + str(self.prec tol), str(self.prec tol))
288
289
           tex parser.make('failure table' + str(self.prec tol))
290
291
       def draw table(self):
292
           "" draw a table containing some userful numbers ""
293
           print 'Errors'
204
           for i in range(self.solver amount):
295
               print '{:12}: {}'.format(self.solver dict[i],
296
                                     self.data.solver[i].errors)
           print 'More than max iterations'
207
           for i in range(self.solver amount):
298
               print '{:12}: {}'.format(self.solver_dict[i],
299
```

```
300
                                      self.data.solver[i].iter errors)
301
           print 'Winner in terms of time'
302
            for i in range(self.solver amount):
               print '{:12}: {}'.format(self.solver dict[i],
303
304
                                      self.data.solver[i].timer.count(1.0))
305
            print 'Winner in terms of matrix-vector products'
306
           for i in range (self.solver amount):
307
               print '{:12}: {}'.format(self.solver dict[i],
308
                                      self.data.solver[i].mvps.count(1.0))
300
       def draw_plot(self):
310
            "" draw the plots ""
311
           time_plot = self.make_figure(1)
319
313
           mvp plot = self.make figure(2)
314
           iter plot = self.make figure(3)
315
           time plot.savefig(str(self.prec tol) + ' time.png', bbox inches='tight')
316
           mvp plot.savefig(str(self.prec tol) + ' mvp.png', bbox inches='tight')
317
           iter_plot.savefig(str(self.prec_tol) + '_iter.png', bbox_inches='tight')
318
            #pvplot.show()
319
320
       def make_figure(self, number):
            "" make a figure ""
321
322
            figure = pyplot.figure()
323
            #pvplot.subplots adjust(left=0.1, right=0.1, top=0.1, bottom=0.1)
324
           plot = figure.add subplot(111)
            for i in range (self.solver amount):
325
326
               if number == 1:
327
                   data = self.data.solver[i].timer
328
               elif number == 2:
329
                   data = self.data.solver[i].mvps
               elif number == 3:
330
                   data = self.data.solver[i].iterations
331
               self._plot(data, i, plot)
332
           leg = plot.legend(self.solver_dict, loc=4)
333
334
           frame = leg.get frame()
335
           frame.set alpha(0.8)
336
           plot.set xlabel(u' ', size='large')
337
           plot.set vlabel(u' ( )', size='large')
338
           return figure
339
3/10
       def plot(self, data, index, plot):
            ''' specify what the plot looks like '''
341
           xlim = self.options.xlim if self.options.xlim > 1 else 10
342
343
           x = scipy.arange(1, xlim, xlim/1000.0)
344
           v = []
345
           for xi in x:
               v.append(1.0 / self.matrix number * \
346
347
                    len([item for item in data if item <= xi]))</pre>
            plot.plot(x, v, self.plotting pattern[index], linewidth=2)
348
349
            plot.set xlim([1, xlim])
350
           plot.set_ylim([0, 1.1])
351
           plot.hold(True)
352
353
       def write time to file(self):
354
           if solf first.
355
               time file = open('time.txt', 'w')
356
               self.first = False
357
           else:
358
               time file = open('time.txt', 'a')
359
           time_file.write(self.matrix_name+' ('+str(round(sum(self.current[:,0])))+')
```

```
\n')
           time_file.close()
360
361
       def move matrix(self, dest):
362
           "" move a bad matrix ""
363
           for pref in ['', '_b', '_rhs1', '_x']:
364
               name = self.matrix name + pref + '.mtx'
365
366
367
                   os.rename('/home/sven/matrices/' + name,
                       '/home/sven/matrices-' + dest + '/' + name)
368
               except OSError, err:
369
                   if pref == '':
370
371
                       print 'Moving matrix failed: {}, {}'.format(name, err)
372
       def move results(self, dest):
373
374
           "" move bad test results ""
375
           if dest == 'small':
               pref = './test-small/'
376
377
           else:
               pref = '/home/sven/matrices-bad/'
378
           for tol in self.prec tols:
379
380
381
                   name = self.matrix_name + '_%05.2f.txt' % tol
382
                   os.rename(self.prefix + '/' + name, pref + name)
383
               except OSError, (errno, err):
                   if errno == 18:
384
385
                       try:
                           shutil.move(self.prefix + '/' + name, pref + name)
386
387
                       except IOError:
388
                           if dest == 'small' or tol == self.prec_tols[0]:
                               print 'Moving results failed: {}, {}'\
389
                                    .format(name, err)
390
391
                           else:
302
393
                   elif dest == 'small' or tol == self.prec tols[0]:
                       print 'Moving results failed: {}, {}'.format(name, err)
394
305
                   else:
396
                       pass
397
           return
398
       def quit on error(self):
300
           ''' error '''
400
           print 'Aborting: an error occured'
401
402
           sys.exit(1)
403
404
       def set_options(self):
           "" set all options ""
405
406
           option_parser = OptionParser()
407
           option parser.add option('-x', '--xlim', dest='xlim', default=10,
408
                   type='float',
409
                   help='the maximum ratio on the x axis of the plots')
410
           option parser.add option('-1', dest='1', default=3,
                   type='int',
411
412
                   help='the value of 1 to use in BiCGSTAB(1), 0 means both')
413
           option_parser.add_option('-e', '--exclude', dest='exclude',
414
                   type='int', action='append',
415
                   help='solver to exclude')
           option parser.add option('-r', '--restriction', dest='restriction',
416
                   type='string', nargs=2,
417
418
                   help='only use the matrices where solver has an error \
```

```
conform to the supplied test, i.e. 5 \' < -4 \'
419
                            means solver 5 has an error value smaller than -4')
420
421
           option parser.add option('-v', '--verbose', dest='verbose',
                    action='store true', default=False,
422
423
                    help='print more output (failed methods)')
424
           option_parser.add_option('-n', '--filelim', dest='n', default=0,
425
                    type='int'.
426
                    help='the amount of matrices to parse')
427
            (options, args) = option_parser.parse_args()
            # add bicgstab(l) to the exclude list
428
           if options.exclude is None:
490
430
               options.exclude = []
           if options.1 == 2:
431
432
               options.exclude.append(options.1 + 5)
433
            elif options.1 == 3:
131
               options.exclude.append(options.1 + 3)
435
           return options
436
437 class MatrixParser(object):
138
       def init (self, columns):
           self.runs = 6
430
440
           self.columns = columns
441
           self.clear()
442
443
       def clear(self):
           self.length = 0
444
445
            self.data = scipy.zeros([self.runs, self.columns])
           self.fail = False
446
447
       def add(self, line):
448
           for i, value in enumerate(line):
449
               self.data[self.length, i] = \
450
                    float (value) if '.' in value else int (value)
451
452
           if int(line[3]) != 0:
453
               self.fail = True
           self.length += 1
454
455
456
       def read(self):
457
           return self.data[0:self.length, :]
458
459 class SolverData(object):
       ''' class that contains the data of all solvers using multiple
460
           Solver objects'''
461
462
       def __init__(self, amount):
463
           self.solver = []
464
           self.amount = amount
           for i in range(self.amount):
465
466
               self.solver.append(Solver())
468 class Solver(object):
       ''' class that contain the data of one solver '''
469
470
       def init (self):
           self.timer = []
471
472
           self.iterations = []
473
           self.mvps = []
474
           self.errors = 0
           self.iter errors = 0
475
476
           self.nan errors = 0
477
       def error(self, error_type):
```

```
479
           if error_type == 1:
480
              self.errors += 1
481
           elif error_type == 2:
482
              self.iter_errors += 1
483
           elif error_type == 3:
              self.nan_errors += 1
484
485
486
       def append(self, ratio, number):
487
           if number == 0:
488
              self.timer.append(ratio)
489
           elif number == 1:
490
              self.iterations.append(ratio)
           elif number == 2:
491
492
              self.mvps.append(ratio)
493
494 def main():
     ''' main method '''
      def write_to_file(text):
          '''write the results to a file'''
497
          f = open('rerun.txt', 'w')
498
499
          f.write(text)
500
          f.close()
501
502
      tolerances = [0.1, 1.0, 10.0]
503
      rerun = ''
504
       for i, tol in enumerate(tolerances):
           parser = Parser(tol, tolerances)
507
           parser.first = (i == 0)
508
          parser.run()
509
          rerun += parser.rerun
         time += parser.time
510
          parser = None
511
       print 'Total time: {}'.format(time)
512
513
      write_to_file(rerun)
515 if __name__ == "__main__":
     main()
```