
faculteit Wiskunde en
Natuurwetenschappen

Performance analysis of the CORS

and BiCOR iterative methods for

solving nonsymmetric sparse

linear systems

Bachelor Thesis in Applied Mathematics

August 2011

Student: S. Baars

Supervisor: Dr. B. Carpentieri

Abstract

Recently, the iterative methods BiCOR and CORS for solving real nonsymmetric (or
complex non-Hermitian), and possibly indefinite sparse linear systems were developed. There
is not much known yet about the performance of those methods. We consider iterative
methods in general, and go more into detail about CORS and BiCOR. We analyse the per-
formance of BiCOR and CORS by comparing them to seven popular solvers on a large set
of publicly available matrices coming from different areas of application. We use different
qualities of preconditioners to do this. In our experiments we observe that CORS is a highly
competitive solver compared to other popular solvers, like GMRES and BiCGSTAB.

Keywords: CORS, BiCOR, GMRES, BiCGSTAB; iterative methods, Krylov subspace meth-
ods; performance profiles; preconditioning.

Contents

1 Introduction 1

2 Krylov subspace methods 1

2.1 The Krylov subspace . 1

2.2 Arnoldi’s method . 2

2.3 Different approaches . 4

2.4 The GMRES method . 5

2.5 Preconditioning . 5

3 The Petrov-Galerkin projection 6

3.1 The basics . 6

3.2 The two-sided biconjugate A-orthonormalisation method 8

3.3 The biconjugate A-orthonormalisation procedure for solving general linear systems 10

4 The BiCOR method 12

5 The CORS method 13

6 Computational aspects 14

6.1 Preconditioning . 14

6.2 Stopping criteria . 15

6.3 Implementational aspects . 16

7 Numerical experiments 17

7.1 Information about the experiments . 17

7.2 Data analysis . 18

7.3 Results . 18

7.3.1 Speed . 20

7.3.2 Reliability . 21

8 Conclusion 23

9 Acknowledgments 23

A Problems 28

A.1 Problem types . 28

A.1.1 Problems with 2D/3D geometry . 28

A.1.2 Problems that normally do not have 2D/3D geometry 28

A.2 Problem list . 28

B Implementation of BiCOR 31

B.1 User documentation . 31

B.1.1 Argument lists and calling sequence . 31

B.1.1.1 Initialization of the control parameters 31

B.1.1.2 Solving Ax=b . 31

B.1.2 Control parameters . 33

B.1.3 Error values . 34

B.1.4 General information . 35

B.2 Implementation . 35

C Implementation of CORS 39

C.1 User documentation . 39

C.1.1 Argument lists and calling sequence . 39

C.1.1.1 Initialization of the control parameters 39

C.1.1.2 Solving Ax=b . 39

C.1.2 Control parameters . 41

C.1.3 Error values . 42

C.1.4 General information . 42

C.2 Implementation . 42

D Implementation of the testing application 46

E Implementation of the data analysis tool 56

1 Introduction

Computational simulation of scientific and engineering problems often involves solving large
systems of equations of the form

Ax = b, (1.1)

with A ∈ Cm×n, x ∈ Cn and b ∈ Cn. The usual way of solving small systems of linear equations
of the form (1.1) is by using Gaussian elimination. Gaussian elimination, however, as well as
other direct methods, has a cost of O(n3)[33]. This is really expensive if the order n of the
matrix A is large and also unnecessarily expensive if the matrix is sparse, i.e. it contains many
zero entries. If the matrix is sparse, not only the computational cost is expensive, but also the
storage cost in the memory. For direct methods it is usually still needed to store n2 entries in
the memory, where one would like to only store the O(n) nonzero entries in the matrix. In this
case it might be useful to use an iterative method, and a Krylov subspace method in particular.

Developing those methods is a continuously evolving subject of research. Recently, a new
family of iterative methods were developed around the two-sided A-orthonormalisation proce-
dure that will be introduced in this thesis. To date, very little is known about the performance
of those methods. We test the performance of two of those methods, BiCOR and CORS, and
compared those with some other popular iterative methods. We do this mostly using various
qualities of preconditioners. To compare BiCOR and CORS to the other iterative methods, we
used a FORTRAN implementation, that we also provide here.

As an introduction to the subject, we discuss iterative methods, also called Krylov methods,
mostly following Van der Vorst in [40]. Then we show how the BiCOR and CORS method can
be derived from the two-sided A-orthonormalisation procedure following [8], and finally, we
analyse the results of our experiments.

2 Krylov subspace methods

2.1 The Krylov subspace

The general idea behind iterative methods is that we want to solve the system Ax = b, and
at each iteration i, we have an approximate solution xi. We can also write this as x = xi + εi
where εi is the error at step i. Multiplication by A gives us

Aεi = A(x− xi) = b−Axi.

Since we do not have the real solution, we do not know the actual error either. Instead we try
to solve the system

Mzi = b−Axi

for zi, with M an approximation of A that makes the system easier to solve. If we take x0 = 0
for instance, the first step would be solving Mz0 = b. Since M is an approximation of A, zi is
an approximation of the error. Thus solving the easier system leads to a better approximation
of the solution: xi+1 = xi + zi. The basic iteration introduced here, now leads to

xi+1 = xi +M−1(b−Axi),

where M is called the preconditioner. One uses a preconditioner to speed up convergence. An
iterative method converges fast when M−1A is close to identity. If M−1A was equal to identity,

1

we would have convergence in one step. We only write the inverse of M for notational purposes.
In practice, M−1 is usually not calculated. For more information about preconditioners, see
section 2.5.

If we now take M = I, we obtain the well known Richardson iteration [40]

xi+1 = b+ (I −A)xi = xi + ri,

with ri = b − Axi the residual at step i. We try to find a relation between ri+1 and ri by
multiplying the above relation by −A and adding b to it

b−Axi+1 = b−Axi −Ari

so

ri+1 = (I −A)ri = (I −A)i+1r0.

It then follows that the approximate solution xi+1 may be written as

xi+1 = r0 + r1 + . . .+ ri =
i∑

k=0

(I −A)kr0

for x0 = 0. We can do this without loss of generality, because in case x0 is nonzero, we could
just shift the system by setting Ay = b−Ax0 = b̂ with y0 = 0. We now observe that

xi+1 ∈ Span
{
r0, Ar0, . . . , A

ir0
}
≡ Ki+1(A; r0).

The space of dimension m, spanned by a given vector v, and increasing powers of A applied to
v up to the (m− 1)th power of A is called the m-dimensional Krylov subspace generated by A
and v, and is denoted as Km(A; v) [13, 40].

2.2 Arnoldi’s method

Assuming the matrix A has n eigenvalues |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| ≥ 0, and linearly
independent eigenvectors {v1, v2, . . . , vn} with Avi = λivi, we may write the solution x to the
system Ax = b as

x =
n∑

j=1

αjvj .

Multiplying both sides by Ak gives

Akx =
n∑

j=1

αjA
kvj =

n∑
j=1

αjλ
k
j vj .

If we factor out λk1 from the right hand side

Akx = λk1

n∑
j=1

αj

λkj

λk1
vj

we see that, since |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| ≥ 0, this converges to

Akx = λk1α1v1

2

as k →∞ and assuming that α1 6= 0 [7]. This only holds because |λ1| has to be strictly greater
than |λ2|. Otherwise we would not able to factor out the eigenvectors belonging to λ2 to λn.
This is the idea behind the basic iteration for finding eigenpairs (θm, vm) through the Power
Method.

Something we observe, is that the obvious basis {r0, Ar0, . . . , Am−1r0} for the Krylov sub-
space Km(A; r0) is not very attractive. The vectors Ajr0 point more and more in the direction
of the dominant eigenvector for increasing j. Hence, the basis vectors will become linearly
dependent in finite precision arithmetic. This is why we want to make sure that we have an
orthogonal basis for our Krylov subspace [40].

A way to form an orthogonal basis for the Krylov subspace is suggested by Arnoldi [1].
Arnoldi’s method often uses modified Gram-Schmidt orthogonalisation in the process of finding
this basis. Modified Gram-Schmidt orthogonalisation is used, because normal Gram-Schmidt
orthogonalisation can produce linearly dependent vectors due to rounding errors. We first
describe this process before describing Arnoldi’s method itself.

In the modified Gram-Schmidt process [31], we start with the vector

q1 =
1

‖x1‖
x1,

where x1, . . . , xn form an ordinary basis. Now, at the beginning of the (k+1)-th step, the
projections of the vector xk+1 along the vectors qi, . . . , qk are progressively subtracted from
xk+1. We can write the first step of the subtraction within the (k+1)-th step of the process
itself as

x
(1)
k+1 = xk+1 − qT1 xk+1q1.

This new vector x
(1)
k+1 is then projected along q2 and subtracted again from x

(1)
k+1, yielding

x
(2)
k+1 = x

(1)
k+1 − q

T
2 x

(1)
k+1q2.

We can continue this process until x
(k)
k+1 is computed. qk+1 is then given as

qk+1 =
1

‖x(k)k+1‖
x
(k)
k+1.

We can now describe the procedure of Arnoldi’s method as follows. We start with v1 =
r0/‖r0‖2. Then we compute Av1, make it orthogonal to v1, and normalise the result using
the modified Gram Schmidt process described above. This gives us v2. In general, we have
an orthonormal basis v1, . . . vj for our Krylov subspace Kj(A; r0). We expand this basis by
calculating t = Avj and orthonormalising this vector t with respect to the basis v1, . . . , vj .
This leads to an algorithm as seen in Algorithm 1 to form a basis v1, . . . , vm for Km(A; r0).
The orthogonalisation can be done in different ways, but the most common way is to use the
modified Gram-Schmidt process [33, 40].

We clearly see here that the matrix A is only accessed through matrix-vector products,
which is an advantage compares to direct methods, where the matrix is used directly. This
allows us to specify our own matrix-vector product if we store the matrix for example in a
sparse format.

Now let Vj denotes the matrix that has columns v1, . . . , vj . We then see from Arnoldi’s
method that

AVm−1 = VmHm,m−1 (2.1)

3

Algorithm 1 Arnoldi’s method using modified Gram-Schmidt orthogonalisation.
1: v1 = r0/‖r0‖2
2: for j = 1, 2, . . . ,m− 1 do
3: t = Avj
4: for i = 1, . . . , j do
5: hi,j = vTi t
6: t = t− hi,jvi
7: end for
8: hj+1,j = ‖t‖2
9: vj+1 = t/hj+1,j

10: end for

where Hm,m−1 is an upper Hessenberg matrix, which means that hi,j = 0 for i > j + 1. The
other entries of Hm,m−1 are defined by Arnoldi’s method. We see that the orthogonalisation
becomes increasingly expensive for increasing dimension of the subspace, since every iteration
needs one extra inner product and vector update compared to the last iteration to compute a
new column of Hm,m−1.

If A is symmetric however, so is Hm−1,m−1 = V T
m−1AVm−1. Therefore, in this case,

Hm−1,m−1 is tridiagonal. This means that during the orthogonalisation process, most inner
products vanish, so the work does not increase. The resulting three-term recurrence relation
is known as the Lanczos method [29] that has some well known methods derived from it. The
constant amount of work that has to be done during every iteration in the Lanczos method is
one matrix vector product, two inner products and two vector updates.

2.3 Different approaches

Methods that attempt to generate an approximate solution from the Krylov subspace, like
Arnoldi’s method, are usually referred to as Krylov subspace methods. There are four classes
of Krylov subspace methods that can be distinguished:

• The Ritz-Galerkin approach: Require for xk that the residual is orthogonal to the current
subspace: b−Axk ⊥ Kk(A; r0).

• The minimum norm residual approach: Require for xk that the Euclidean norm ‖b−Axk‖2
is minimal over Kk(A; r0).

• The Petrov-Galerkin approach: Require for xk that the residual b−Axk is orthogonal to
some other suitable k-dimensional subspace.

• The minimum norm error approach: Require for xk in ATKk(AT ; r0) that the Euclidean
norm ‖xk − x‖2 is minimal.

The Ritz-Galerkin approach leads to methods such as the Lanczos method mentioned be-
fore and the Conjugate Gradient (CG) method [21]. The minimum norm residual approach
leads to methods such as the Generalised Minimum Residual (GMRES) method [36]. The min-
imum norm error approach leads to some less well known methods that will not be discussed
in this paper. And lastly, the Petrov-Galerkin approach leads to methods such as the Biconju-
gate Gradient (BiCG) method [15], the Quasi-Minimal Residual (QMR) method [18], and the
Biconjugate A-Orthogonal Residual (BiCOR) [25] method we discuss later in this thesis. Other
methods like the Conjugate Gradients Squared (CGS) [38], Biconjugate Gradient Stabilised
(BiCGSTAB) [39] and BiCGSTAB(`) [37] methods and the Conjugate A-Orthogonal Residual
Squared (CORS) method [25] we discuss later, are hybrids of the different approaches.

4

2.4 The GMRES method

The GMRES method can be derived using the minimum residual approach. It is an optimal
method, in the sense that it minimizes the 2-norm of the residual over the corresponding Krylov
space. Starting from Arnoldi’s method, in (2.1), we had an orthogonal basis for the Krylov
subspace of dimension i+ 1, leading to

AVi = Vi+1Hi+1,i.

We are looking for an xi ∈ Ki(A; r0), such that the residual, ‖b − Axi‖2, is minimal. Since
xi ∈ Ki(A; r0), we can also write xi = Viy. The norm of the residual can be rewritten as

‖ri‖2 = ‖b−Axi‖2 = ‖b−AViy‖2 = ‖βVi+1e1 − Vi+1Hi+1,iy‖2,

with β ≡ ‖r0‖2. Now, since the column vectors of Vi+1 are orthonormal, we have

‖b−Axi‖2 = ‖βe1 −Hi+1,iy‖2,

which can be solved as a least squares problem. This least squares problem can be solved by
making the QR-factorisation of Hi+1,i, and because of the upper Hessenberg structure, this can
be done efficiently using Givens matrices. Givens matrices are elementary rotation matrices of
thee form G(i, k, θ) = I−Y , where I is the identity matrix and Y is a null matrix except for the
elements yii = ykk = 1 − cos (θ) and yik = −yki = − sin (θ). The Givens rotations remove the
subdiagonal elements from the upper Hessenberg matrix Hi+1,i, resulting in an upper triangular
matrix Ri,i:

Hi+1,i = Qi+1,iRi,i

where Qi+1,i is the matrix consisting of the product of successive Givens rotations. Now we can
write the least squares problem as the minimisation of

‖βe1 −Hi+1,iy‖2 = ‖βe1 −Qi+1,iRi,iy‖2
= ‖QT

i+1,iβe1 −Ri,iy‖2.

This leads to the minimum norm solution

y = R−1i,i Q
T
i+1,iβe1,

where the approximate solution xi is computed as xi = Viy.

To lower the storage and computational costs of the orthogonalisation process, GMRES
is usually restarted after m steps. This method is referred to as GMRES(m). By restarting
GMRES, we lose the optimality property however. The non-restarted version of GMRES is also
referred to as full GMRES.

2.5 Preconditioning

In general, all iterative methods we mentioned before converge rapidly if the matrix A of the
problem Ax = b from (1.1) is close to identity. If the matrix is equal to the identity matrix,
those methods converge in one step. For most problems however, the matrix A is far from being
close to identity, and therefore one can not be sure that the iterative methods will compute a
good approximation of the solution in m � n iterations. Every different method has its own
drawbacks. In exact arithmetic, some methods, like full GMRES, lead to the exact solution in

5

at most n steps, but that might not be very practical. Other methods, like CG, only work for
certain kinds of matrices. In the case of CG, the matrix must be symmetric positive definite.
There are also methods, like BiCG, BiCGSTAB and the methods discussed in this thesis, CORS
and BiCOR, that might suffer from breakdowns or stagnation. The rate of convergence depends
in a very complicated way on the spectral properties (eigenvalue distribution, etc.) of the matrix
A and in real applications, this information is not available [40].

The trick is to use a preconditioner. A preconditioner M ≈ A tries to get the original
problem closer to identity, so the spectral properties are better. In general, one can write

M−11 AM−12 y = M−11 b

where M1 is the left preconditioner, and M2 is the right preconditioner with x = M−12 y. If we
choose, for example M1 = A and M2 = I, the problem is solved in one step. Note that if we
precondition from the right, the residual stays the same as the residual of the original system,
because

r = b−Ax̂ = b−AM−12 y, (2.2)

where x̂ is the approximate solution.

Calculating the inverse is usually very expensive, so instead of calculating the exact inverse,
one can also try to approximate it. Tools to derive those preconditioners are even more diverse
than those used in the derivation of iterative methods [20], and therefore we do not discuss this
here.

3 The Petrov-Galerkin projection

3.1 The basics

For nonsymmetric matrices, it is desirable to have a three-term recurrence relation similar
to the one from the Lanczos method. Due to the work of Faber and Manteuffel, we know
that for nonsymmetric matrices, it is not possible to find short-term recurrence relations while
keeping the optimality property as for the GMRES method [14]. To reduce memory usage and
computational costs, however, it is still very useful to derive non-optimal methods. Let’s start
with what we already know from Arnoldi’s method. This suggested a basis

hi+1,ivi+1 = Avi −
i∑

j=1

hj,ivj (3.1)

for the Krylov subspace, which could be written as

Vi+1Hi+1,i = AVi (3.2)

in matrix notation. Using Vi for the projection, we would end up making the new vector
orthogonal to Krylov subspace like we would do in the Ritz-Galerkin approach, but that’s not
what we want here. So suppose that we have Wi for which W T

i Vi = Di with Di a diagonal
matrix, and for which vi+1 is orthogonal to Wi, so W T

i vi+1 = 0. Then

W T
i AVi = DiHi,i. (3.3)

Our goal is to find a Wi such that Hi,i is tridiagonal. In this case we would have a three-term
recurrence relation. So from the above statement we see that (W T

i AVi)
T = V T

i A
TWi should

6

also be tridiagonal. This looks very similar to what we have in (3.3), so this suggests we can
write a relation similar to (3.1), but now with Wi.

Let’s choose an arbitrary w1 6= 0 with wT
1 v1 6= 0. Then we can use (3.1) to generate v2

and orthogonalise it with respect to w1. So then from (3.3) we see that h1,1 = wT
1 Av1/(w

T
1 v1).

Since

vT1 h1,1w1 = vT1 (wT
1 Av1)w1/(w

T
1 v1)

= (wT
1 Av1)v

T
1 w1/(w

T
1 v1)

= wT
1 Av1 = vT1 A

Tw1,

we see that w2 generated from

h2,1w2 = ATw1 − h1,1w1 (3.4)

is also orthogonal to v1. That is,

vT1 w2 =
1

h2,1

(
vT1 A

Tw1 − vT1 h1,1w1

)
=

1

h2,1

(
vT1 A

Tw1 − vT1 ATw1

)
= 0.

Relation (3.4) indeed looks similar to (3.1).

We can go on with this, and see that we can create bi-orthogonal basis sets {vj} and {wj}
by making every new vi+1 orthogonal to w1, . . . , wi, and then generating wi+1 using the same
coefficients, but with AT instead of A.

Now we have that both W T
i AVi = DiHi,i and V T

i A
TWi = DiHi,i. This implies that DiHi,i

is symmetric, and hence our Hessenberg matrix Hi,i is tridiagonal. This gives us the three-term
recurrence relation we wanted with v1, . . . , vi a basis for Ki(A; v1) and w1, . . . , wi a basis for
Ki(A

T ;w1). The matrix Hi,i is also commonly denoted as Ti,i due to its tridiagonal form. The
three-term recurrence relation we found does not only save a lot of computational power, but
also requires less memory. We only have to store the last three vectors of both of the bases.

The two-sided Lanczos method [30] follows from what we derived above. Since we have a
tridiagonal matrix, we can write vi+1 and wi+1 at step i in the construction of the dual basis as

δivi+1 = Avi − αvi − βi−1vi−1

and

δiwi+1 = ATwi − αiwi − βi−1wi−1.

Algorithm 2 The two-sided Lanczos method.

1: Choose a v1 and w1 such that wT
1 v1 = γ1 6= 0

2: β0 = 0, w0 = v0 = 0
3: for j = 1, 2, . . . do
4: p = Avi − βi−1vi−1

5: αi = wT
i p/γi

6: p = p− αivi
7: δi+1 = ‖p‖2
8: vi+1 = p/δi+1

9: wi+1 = (ATwi − βi−1wi−1 − αiwi)/δi+1

10: γi+1 = wT
i+1vi+1

11: βi = δi+1γi+1/γi
12: end for

7

So here we have δi = hi+1,i, αi = hi,i, and βi = hi−1,i where available. The full method is
given in Algorithm 2. In this algorithm we also use γi = wT

i vi. The only thing we do here is
repeatedly calculating vi+1 and wi+1 using exactly what we derived above.

The method we described above can also be seen as an oblique projection of the residual
onto the space orthogonal to the space spanned by W , which is exactly what our initial condition
rk ⊥ Km(AT , w1) says. With an oblique projection we mean the projection of a vector, onto
a space K orthogonal to a space L⊥. We also say the projection is along L onto K [35, 6].
Put in another way, oblique projections are projections that are not orthogonal. Orthogonal
projections actually project onto the orthogonal space.

Aw1 r0 = w1

r1

v1

Figure 1: 2D interpretation of the Petrov-Galerkin projection

In the case of the Petrov-Galerkin projection, we are projecting the residual along AW
onto the space orthogonal to the space spanned by W , as can be seen in Figure 1. In this
figure, the purple line resembles the projection. The image was created for a 2×2 matrix, using
the two-sides Lanczos method to construct the bases V and W . We chose v1 = r0/‖ro‖2 and
w1 = r0. After computing V and W , we applied the prototype projection method suggested by
Saad in [35]. The prototype projection method can be found in Algorithm 3

Algorithm 3 Prototype projection method
1: for i = 1, 2, . . . , until convergence do
2: Select a pair of subspaces K and L
3: Choose bases V = [v1, . . . , vi] and W = [w1, . . . , wi] for K and L
4: ri = b−Axi
5: y = (WTAV)−1WT ri
6: xi+1 = xi + V y
7: end for

3.2 The two-sided biconjugate A-orthonormalisation method

The two-sided biconjugate A-orthonormalisation method [25] is a method similar to the two-
sided Lanczos method, and can, like the two-sided Lanczos method, be used for nonsymmetric
matrices. Given two vectors v1 and w1 for which wT

1 Av1 = 1, we define two Lanczos-type
vectors vj and wj very similar to the ones we described in the last section. We again use scalars

8

αj , βj and δj . The two vectors are recursively defined as

δj+1vj+1 = Avj − βjvj−1 − αjvj , (3.5)

βj+1wj+1 = ATwj − δjwj−1 − αjwj (3.6)

where the scalars are chosen as

αj = wT
j A

2vj , βj = wT
j−1A

2vj , δj = wT
j A

2vj−1.

The choice of the scalars assures that the vectors vj and wj form a biconjugate A-orthonormal
basis. So wT

i Avj = δi,j , with δi,j the Kronecker delta. The rest of the procedure can be derived
from the two-sided Lanczos algorithm. For the sake of clarity, we show a complete version of
the process in Algorithm 4.

Algorithm 4 The biconjugate A-orthonormalisation procedure.

1: Choose a v1 and w1 such that wT
1 Av1 = 1

2: β0 = δ1 = 0, w0 = v0 = 0
3: for j = 1, 2, . . . do
4: αj = wT

j A(Avj))
5: ṽj+1 = Avj − αjvj − βjvj−1

6: w̃j+1 = ATwj − αjwj − δjwj−1

7: δj+1 = |w̃T
j+1Aṽj+1|

1
2

8: βj+1 =
w̃T

j+1Aṽj+1

δj+1

9: vj+1 =
ṽj+1

δj+1

10: wj+1 =
w̃j+1

βj+1

11: end for

The fact that the basis sets {vj} and {wj}, generated from relations (3.5) and (3.6), really
form a basis of the Krylov subspaces Ki(A; v1) and Ki(A

T ;w1) can be shown in a similar way as
we did for the two-sided Lanczos method, and can be found for example in [25]. Additionally,
the following relations hold

AVm = Vm+1Tm+1,m, (3.7)

ATWm = Wm+1T
T
m,m+1, (3.8)

W T
mAVm = Im, (3.9)

W T
mA

2Vm = Tm, (3.10)

with

Tm =


α1 β2
δ2 α2 β3

. . .
. . .

. . .

δm−1 αm−1 βm
δm αm


and Vm = [v1, v2, . . . , vm], Wm = [w1, w2, . . . , wm].

Due to the three-term recurrence relation like the one in the two-sided Lanczos method,
we can overwrite for example wj−1 with wj+1. After all, we see in Algorithm 4, line 6, that
wj−1 is not used after w̃j+1 has been computed. An advantage of the three-term recurrence
relation is that storage is very limited if you compare it to Arnoldi’s method.

9

The method can possible fail if δj+1 vanishes while w̃j+1 and Aṽj+1 are not the zero vector.
One could try to recover from such failures using so-called look-ahead strategies [32] as used in
for instance the QMR implementation we use for this thesis.

3.3 The biconjugate A-orthonormalisation procedure for solving general lin-
ear systems

As one can derive for instance the Biconjugate Gradient method from the two-sided Lanc-
zos method, one can also derive methods for solving Ax = b from the the Biconjugate A-
Orthonormalisation procedure by applying a Petrov-Galerkin projection. We will describe this
process in three steps

Step 1 Run Algorithm 4 for m� n steps and generate Vm, Wm and Tm as described above.

Step 2 Compute the approximate solution xm that belongs to the Krylov subspace x0 +
Km(A; v1) by using the Petrov-Galerkin projection to project the residual orthogonally to
the space ATKm(AT ;w1), so

rm = b−Axm ⊥ ATKm(AT ;w1). (3.11)

Using matrix notation, we may also write

(ATWm)T (b−Axm) = 0

and since our approximate solution is of the form

xm = x0 + Vmym (3.12)

we get, using (3.10)

(ATWm)T (b−A(x0 + Vmym)) = (ATWm)T r0 − (ATWm)TVmym

= W T
mAr0 − Tmym = 0

so, if we have v1 = r0/‖r0‖2,

Tmym = ‖r0‖2e1 (3.13)

with e1 the first canonical unit vector.

Step 3 Compute the new residual, and terminate if it meets the stopping criterion. Otherwise,
enlarge the Krylov subspace and start again.

By using this method, we not only solve the system Ax = b, but also implicitly the system
ATx′ = b′. We use the notation used in [8] by denoting vectors belonging to this dual system
with primed symbols. We can now say we compute the approximation x′m that belongs to the
Krylov subspace x′0 +Km(AT ;w1), so we get a relation similar to (3.11)

r′m = b′ −ATx′m ⊥ AKm(A; v1).

We also get similar relations as above, but now for the dual system

(AVm)T (b′ −ATx′m) = 0, (3.14)

x′m = x′0 +Wmy
′
m, (3.15)

T T
my
′
m = ‖r′0‖e1. (3.16)

10

We can now update xm and x′m from xm−1 respectively x′m−1. Assume the LU factorisation
of the tridiagonal matrix Tm is

LmUm = Tm.

Substituting this expression in (3.12), (3.13) and (3.15), (3.16), we get

xm = x0 + Vm(LmUm)−1(‖r0‖2e1)
= x0 + VmU

−1
m L−1m (‖r0‖2e1)

= x0 + Pmzm

x′m = x′0 +Wm(UT
mL

T
m)−1(‖r0‖2e1)

= x′0 +Wm(LT
m)−1(UT

m)−1(‖r0‖2e1)
= x′0 + P ′mz

′
m

where we take Pm = VmU
−1
m , zm = L−1m (‖r0‖2e1), P ′m = Wm(LT

m)−1 and z′m = (UT
m)−1(‖r′0‖2e1).

Because of the structure of Um, which only has a nonzero diagonal and superdiagonal, we can
easily calculate the elements of Pm. We see that um−1,mpm−1 + um,mpm = vm, where pm and
vm are the last column of Pm and Vm respectively, and ui,j is the i, jth element of Um. Now it
follows that

pm =
1

um,m
(vm − um−1,mpm−1)p. (3.17)

In addition, because of the structure of Lm, which only has a nonzero diagonal (consisting of
only ones) and subdiagonal, we find

zm = (zm−1, ζm)T

in which ζm = lm,m−1ζm−1, where li,j is the i, jth element of Lm. If we now substitute this back
in the relation xm = x0 + Pmzm found above, we get

xm = x0 + [Pm−1, pm]

[
zm−1
ζm

]
= x0 + Pm−1zm−1 + ζmpm.

Noting that x0 + Pm−1zm−1 = xm−1, we finally find

xm = xm−1 + ζmpm. (3.18)

If we repeat those steps for the dual system, we find a similar relation

x′m = x′m−1 + ζ ′mp
′
m. (3.19)

This is the same derivation as used for IOM and DIOM in [35].

We now state two propositions that we will use in the derivation in the next section.

Proposition 3.1. The pairs of the primary and dual direction vectors pi and p′j form a A2-

orthonormal set, i.e. p′Ti A
2pj = δi,j.

Proof.

(P ′m)TA2Pm = (Wm(LT
m)−1)TA2VmU

−1
m

= L−1m W T
mA

2VmU
−1
m

= L−1m TmU
−1
m (using (3.9))

= L−1m LmUmU
−1
m

= I

11

Proposition 3.2. The pairs of the primary and dual residual vectors ri and r′j form a A-

orthonormal set, i.e. r′Ti Arj = 0 for i 6= j.

Proof. Combining (3.7) and (3.12)-(3.13), we get

rm = b−Arm
= b−Ax0 −AVmym
= r0 − VmTmym − δm+1vm+1e

T
mym

= r0 − r0 − δm+1vm+1e
T
mym

= −δm+1vm+1e
T
mym.

In a similar way, we get for the dual system, using (3.8) and (3.15)-(3.16),

r′m = −βm+1wm+1e
T
my
′
m.

Combining the above two relations with (3.9), we now find that r′Ti Arj = 0 for i 6= j.

4 The BiCOR method

We can now proceed in a similar way as the derivation of the Conjugate Gradient method. For
the derivation of CG, see for example [40, 20]. Given an initial guess x0, we get the coupled
two-term recurrences

r0 = b−Ax0, p0 = r0, (4.1)

xj+1 = xj + αjpj , (4.2)

rj+1 = rj − αjApj , (4.3)

pj+1 = rj+1 + βjpj , for j = 0, 1, . . . (4.4)

where rj = b−Axj is the residual at iteration j and pj is the search direction vector at iteration
j as in (3.17). Here the vectors pj are multiples of the vectors pj as seen in 3.3. It’s important
to note that αj and βj are different from the αj and βj used in the previous section (3.2). This
is done for consistency with the notation used in the derivation of other methods. The coupled
two-term recurrences for the dual system are defined in a similar way:

r′j+1 = r′j − αjA
T p′j , (4.5)

p′j+1 = r′j+1 + βjp
′
j , for j = 0, 1, (4.6)

The parameters αj and βj can be determined from the orthogonality relations

rj+1 ⊥ Lm and Apj+1 ⊥ Lm
as found in section 3.2. Using propositions 3.1 and 3.2, we find the subspace ATKm(AT ; r′0) to
be suitable, where r′0 = P (A)r0 with P (t) an arbitrary polynomial in variable t. A common
choice is r′0 = r0, but here we will use r′0 = Ar0. If instead of ATKm(AT ; r′0) we choose for
instance Km(A; r0), we get the CG method [21]. Further derivation using (4.1)-(4.6) gives us
the following expressions for αj and βj . For the full derivation see for example [28].

αj =
r′Tj Arj

p′Tj A
2pj

(4.7)

βj =
r′Tj+1Arj+1

r′Tj Arj
. (4.8)

12

Now, combining (4.1)-(4.8), we finally get the Biconjugate Biconjugate A-Orthogonal Residual
method, or simply BiCOR [25, 28, 27, 8, 9]. The complete algorithm can be found in Algorithm
5. In the algorithm, we use the following notations: the dual vectors have a primed symbol,
preconditioned vectors have a prefixed z, and a hat symbol is used for matrix-vector products.

Algorithm 5 Left preconditioned BiCOR method.
1: Compute r0 = b−Ax0 for some initial guess x0.
2: Choose r′0 = P (A)r0 such that 〈r′0, Ar0〉 6= 0, where P (t) is a polynomial in t. (For example, r′0 = Ar0).
3: for j = 1, 2, . . . do
4: solve Mzrj−1 = rj−1

5: if j=1 then
6: solve MT zr′0 = r′0
7: end if
8: ẑr = Azrj−1

9: ρj−1 =
〈
zr′j−1, ẑr

〉
10: if ρj−1 = 0, method fails
11: if j = 1 then
12: p0 = zr0
13: p′0 = zr′0
14: q0 = ẑr
15: else
16: βj−2 = ρj−1/ ρj−2

17: pj−1 = zrj−1 + βj−2 pj−2

18: p′j−1 = zr′j−1 + βj−2 p
′
j−2

19: qj−1 = ẑr + βj−2 qj−2

20: end if
21: q̂ ′j−1 = AT p′j−1

22: solve MT ẑq′j−1 = q̂ ′j−1

23: αj−1 = ρj−1 /
〈
ẑq′j−1, qj−1

〉
24: xj = xj−1 + αj−1 pj−1

25: rj = rj−1 − αj−1 qj−1

26: zr′j = zr′j−1 − αj−1 ẑq
′
j−1

27: check convergence; continue if necessary
28: end for

5 The CORS method

Using the same strategy used when deriving the CGS method from the BiCG method, see
for example [40], we can derive a transpose-free variant of the BiCOR method, the Conjugate
A-Orthogonal Residual Squared method (CORS) [25, 28, 27, 8, 9].

In the previous section, we could have written the representations of the vectors rj , pj , r
′
j , p
′
j

at step j as the polynomial representations

rj = φj(A)r0, pj = ψj(A)r0,

r′j = φj(A
T)r′0, p′j = ψj(A

T)r′0,

where φj and ψj are Lanczos-type polynomials of degree less than or equal to j satisfying
ψj(0) = 1. Substituting back in (4.7) and (4.8) gives us

αj =
r′Tj Arj

p′Tj A
2pj

=
r′T0 Aφ

2
j (A)r0

r′T0 A
2ψ2

j (A)r0

βj =
r′Tj+1Arj+1

r′Tj Arj
=
r′T0 Aφ

2
j+1(A)r0

r′T0 Aφ
2
j (A)r0

.

13

Also note that from (4.3) and (4.4) φj and ψj can be expressed recursively as

φj+1(t) = φj(t)− αjtψj(t),

ψj+1(t) = φj+1(t) + βjψj(t).

Using the strategy mentioned above, we now get the CORS algorithm, as described in Algorithm
6.

Algorithm 6 Left preconditioned CORS method.
1: Compute r0 = b−Ax0 for some initial guess x0.
2: Choose r′0 = P (A)r0 such that 〈r′0, Ar0〉 6= 0, where P (t) is a polynomial in t. (For example, r′0 = Ar0).
3: for j = 1, 2, . . . do
4: solve Mzrj−1 = rj−1

5: ẑr = Azrj−1

6: ρj−1 = 〈r′0, ẑr〉
7: if ρj−1 = 0, method fails
8: if j = 1 then
9: e0 = r0
10: solve Mze0 = e0
11: d0 = ẑr
12: q0 = ẑr
13: else
14: βj−2 = ρj−1 / ρj−2

15: ej−1 = rj−1 + βj−2 hj−2

16: zej−1 = zrj−1 + βj−2 fj−2

17: dj−1 = ẑr + βj−2 gj−2

18: qj−1 = dj−1 + βj−2 (gj−2 + βj−2qj−2)
19: end if
20: solve Mzq = qj−1

21: ẑq = Azq
22: αj−1 = ρj−1 / 〈r′0, ẑq〉
23: hj−1 = ej−1 − αj−1 qj−1

24: fj−1 = zej−1 − αj−1 zq
25: gj−1 = dj−1 − αj−1 ẑq
26: xj = xj−1 + αj−1 (2zej−1 − αj−1zq)
27: rj = rj−1 − αj−1 (2dj−1 − αj−1 ẑq)
28: check convergence; continue if necessary
29: end for

From our experiments, we find that CORS is highly competitive to all other popular
algorithms (see section 7). However, like the CGS method, it is based on squaring the residual,
which might result in a substantial buildup of rounding errors and worse approximate solutions,
or possibly even overflow. This also means that CORS might in general need more time to
complete a calculation than other methods, if they both succeed.

6 Computational aspects

6.1 Preconditioning

In our experiments, we use preconditioners constructed by ILUPACK [5]. The algorithms of
ILUPACK compute an incomplete LU-factorisation A = LDU+E. Here L is a lower triangular
matrix with unit diagonal, D is a diagonal matrix and U is an upper triangular matrix with
unit diagonal. LDU is an approximation of the standard LU-factorisation that can be used as
a preconditioner. Furthermore ‖E‖ < τ where τ is the drop tolerance. The matrices L, D and

14

U are easily implicitly computed. In the case of ILUPACK, the diagonal matrix is not a real
diagonal matrix. ILUPACK computes

P̃ TAQ̃ =

(
B F
E C

)
≈
(
LB 0
LE I

)(
DB 0
0 SC

)(
UB UF

0 I

)
and then uses the inverse

(P̃ TAQ̃)−1 =

(
B F
E C

)−1
≈
(
B̃−1 0

0 0

)
+

(
B̃−1F
I

)
S−1C

(
−EB̃−1 I

)
where B̃ = LBDBUB [4].

6.2 Stopping criteria

An iterative method will never provide an exact solution with a zero residual, r = b−Ax = 0,
unless of course b is equal to zero. For this reason, we have to choose a good stopping criterion
that we can use in all the different solvers we use for testing. A really small relative error
‖x − y‖/‖x‖ with respect to the approximate solution y is usually enough, but this can not
always be achieved. Also, since we do not have the actual solution, we can not explicitly
calculate the relative error. Therefore, our stopping criterion will be based on the backward
error analysis introduced by Wilkinson [41].

A calculated solution x̂ of a system Ax = b can be seen as the (exact) solution of the
perturbed problem

(A+ δA)x̂ = (b+ δb).

The so called backward error measures the distance between the data of the original system
and the perturbed system. The uncertainties in the data can either be due to measurements, or
due to accumulation or propagation of roundoff errors [22]. If the backward error is not larger
than those uncertainties, we may assume that the approximation is accurate. Componentwise
perturbations and normwise perturbations can be used to calculate backward error. These lead
to explicit formulas to calculate the backward error. It is generally accepted that for iterative
methods, the use of normwise perturbations is appropriate [17]. We use this strategy to stop
our solvers.

At iteration j of an iterative method, we compute an approximation xj of the actual
solution x = A−1b. We can see xj as the solution of the perturbed problem (A+δA)xj = (b+δb).
We introduce

ηj = min {ε > 0 : (A+ δA)xj = (b+ δb), ‖δA‖2 ≤ εα, ‖δb‖2 ≤ εβ}

=
‖b−Axj‖2
α‖xj‖2 + β

as the normwise backward error [22]. When the machine precision has been reached by our
method, the method does not converge any further, so at best, the backward error is as small
as the machine precision. In the testing application, we stop when η ≤ 10−10.

Common choices for α and β are, respectively, ‖A‖2 and ‖b‖2. In this case, ηj is called the
normwise relative backward error [22]. For the sake of simplicity, however, we have chosen to
use α = 0 and β = ‖b‖2 in the testing application.

15

Value Meaning

-1 An error occurred
1 Convergence has been achieved or the user may check for convergence
2 The user must perform a matrix-vector product
3 The user must perform the preconditioning operation

Table 2: Return values of IACT for our CORS implementation

6.3 Implementational aspects

Implementations of iterative methods basically require vector updates, scalar products and
matrix-vector products. The first two are standard routines that are implemented in the BLAS
library, but for the matrix-vector products, the user might want to provide their own implemen-
tations. This is mainly because matrices can be stored in various ways. Sometimes matrices
are not even stored explicitly, but only as a subroutines. The same holds for preconditioners.
ILUPACK for example does not provide an explicit matrix to use for preconditioning.

We could just let the user implement matrix-vector products in the code themselves, but
that is not very user-friendly. For this reason, we allow the user to specify their own matrix-
vector products and preconditioning operations, using reverse communication [12]. Reverse
communication is commonly used in FORTRAN implementations of iterative methods, for
example in the Harwell Subroutine Library (HSL) [23]. Here we explain how it works.

In the call to the iterative method, several variables are provided. One of those is the
reverse communication variable. Once you call the function for the first time, it has to have
a certain value, so the method knows it’s the first time you call it. In our case the variable is
IACT and this default value is zero. Other values of the reverse communication variable tell you
to perform for instance a matrix-vector product, a preconditioning operation, or they tell you
that an error occurred or convergence has been achieved. See for an example of the values of
IACT Table 2.

One of the other variables is an array of vectors the method will use during the process.
Once the user is told to perform for example a matrix-vector product, other variables are used
to tell the user which vectors in the array to use. In our case those variables are LOCY and LOCZ.
Meaning the location of y and z coming from the assignment y = Az. So one reads from the
LOCZ-th vector and writes to the LOCY-th vector. Once the user performed the operation he is
supposed to perform, the same subroutine is called again with the same argument. This process
is repeated until convergence is observed by either the user or the algorithm itself, depending
on whether the user wants to check or not.

The reverse communication method is overall very fast, because no memory has to be
allocated during any of the operations. The user only has to perform a certain operation. It’s
also very user friendly, because the user can use any implementation of a matrix-vector product,
preconditioning operation, or convergence check.

A different way to implement this in FORTRAN would be allowing the user to pass a
function or subroutine to the subroutine that is then called by the subroutine itself, but this
limits the user to passing only subroutines or functions that require a set amount of variables,
whereas the user probably wants to pass more variables. A way to do this in object oriented
languages, like C++, is by overloading operators.

16

7 Numerical experiments

7.1 Information about the experiments

In our experiments, we consider a collection of various matrices available from the University of
Florida Sparse Matrix Collection from Tim Davis [10]. The matrices we used are a reasonable
representation of all nonsymmetric and real matrices available in the collection, covering every
field of research in the collection. To analyse the performance of BiCOR and CORS, we com-
pared them to the popular methods BiCG, BiCGSTAB, CGS, GMRES, BiCGSTAB(`), QMR
and TFQMR. For GMRES we used a value of restart equal to 100. This reduced the memory
needed to run the solver on the largest problems. We chose the value ` = 3 for BiCGSTAB(`),
because this yielded the best results.

We implemented the BICOR and CORS methods in FORTRAN 77 by ourselves. For
BiCG, BiCGSTAB, CGS and GMRES we used implementations from the Harwell Subroutine
Library (HSL) [23]. The implementation of BiCGSTAB(`) was obtained from Van der Vorst’s
website, [16] and the implementations of QMR and TFQMR came from QMRPACK [19].

The tests were run on a PC equipped with an AMD AthlonTM 7850 Dual-Core Processor
running at 2,8 GHz and 4GB 800 MHz DDR2-RAM. Our code was compiled with the GNU
FORTRAN compiler (gfortran) version 4.5.2 that came with Ubuntu 11.04. The implementa-
tions of all the solvers we tested were in FORTRAN 77, the testing application calling those
implementations was in FORTRAN 2003 to allow us to keep running the application without
having to restart for every other preconditioner or matrix. This needed memory allocation and
making sure the results were saved on the local disk required flushing the file after every solver
completed.

To read the matrices from our hard-drive, we downloaded the matrices in MatrixMarket
format [3]. To store our matrices in the main memory, we used the compressed sparse row
format. We used SPARSKIT [34] to convert the matrices from the coordinate format used
in the MatrixMarket script to the compressed sparse row format. The matrix-vector product
and transpose matrix-vector product were performed by AMUX and ATMUX in SPARSKIT. The
preconditioning operation was performed by ILUPACK. Those libraries, as well as the imple-
mentations of all the different solvers, needed a BLAS implementation, for which we used the
ACML library optimised for AMD processors.

The data we gathered from running the different solvers included the amount of time it
took to solve a problem, the amount of matrix-vector products, and, if a solver did not complete,
the reason why. We ran every solver six times if it completed the first time to be able to get
rid of any flaws caused by processes running in the background. To minimise this effect, no
applications were started other than the default startup applications, excluding Ubuntu One,
and including Dropbox to make sure results were not lost, a terminal, and nautilus. During the
process, the CPU was monitored to make sure nothing interfered with the testing application.
As a result, the testing application ran at 99%-100% of one core essentially all of the time.

To make a better selection of the matrices to test, we excluded matrices that completed
faster than 0.05 seconds, because the results we got from the CPU TIME routine were only
accurate to up to 2 decimals. Additionally, we excluded those matrices of which the problems
took too long to solve, i.e. took more than 20000 matrix-vector operations, for none of the
iterative solvers using the best preconditioner. The reason we stopped at 20000 matrix-vector
products is that for the bigger problems it would take five days or more to get up to n iterations
for any solver. This would mean that we would be done maybe two years from now. The reason
we excluded the problems that failed to complete for every solver was so we did not have to

17

rerun them for worse preconditioners.

We also checked if a result of a given solver on a given problem was much different from
the average of the other runs with the same solver on the same problem. If it was more than
10% off, it was excluded from the results. This rarely ever happened.

7.2 Data analysis

To analyse the data we gathered from running the testing application, we make use of perfor-
mance profiles of the computation time and the amount of matrix-vector products as suggested
by Dolan and Moré in [11]. In the performance profiles, we can see what solver is most likely
to solve a certain problem after a certain amount of time or with a certain amount of matrix-
vector products compared to the other solvers. The best solver for every matrix gets a value of
one associated with them, and the other solvers get a value greater than one, that is the ratio
between this solver and the best solver. So the performance ratio of a solver s on a problem p
is given by

rp,s =
tp,s

mins tp,s

and the cumulative distribution function for the performance ratio is given by

ρs(τ) =
1

np
size{p : rp,s ≤ τ}

where np is the total amount of problems we tested. So at τ = τ1, a certain solver s has a
probability ρs(τ1) of solving a problem at a ratio τ1 worse than the fastest solver. ρ(1), is of
particular interest, because we can see there how many times a solver was the best.

If a solver does not solve a problem, the ratio rM is assigned. This ratio should be higher
than the highest ratio found for any solver on any problem that did not fail. In this way, the
solver will still have a value assigned for the certain problem where it failed, but we simply will
not plot for τ ≥ rM . So we will see the solver that solved the most problems overall on top
when we look at the far right of the plot.

7.3 Results

We ran our preliminary tests with three different preconditioners constructed with drop toler-
ances of 0.1, 1.0 and 10.0 on a total of more than 100 matrices, but ended up with only 72
matrices that satisfied our criteria. We solved the linear system using preconditioning from the
right. This means that we solved the system AM−12 y = b with our solution x = M−12 y. From
(2.2), we see that we did not have to adjust our stopping criterion to work on the preconditioned
system. If we would have used preconditioning from the left, in a real implementation one would
have had to adjust every solver to have a stopping criterion based on the preconditioned system.
We could, however, in reverse communication just replace the matrix-vector products with a
preconditioning operation and a matrix-vector product, and the preconditioning operation with
a vector copy.

The time it took to complete the experiments with 9 solvers on 72 matrices was over 120
hours. We analyse the results in the next sections.

18

(a) Ratio of CPU time (b) Ratio of matrix-vector products

Figure 2: Performance profiles with a tolerance of 0.1

(a) Ratio of CPU time (b) Ratio of matrix-vector products

Figure 3: Performance profiles with a tolerance of 1.0

(a) Ratio of CPU time (b) Ratio of matrix-vector products

Figure 4: Performance profiles with a tolerance of 10.0

19

7.3.1 Speed

As one can see in Figures 2-4, our tests revealed that GMRES and BiCGSTAB were in general
the fastest solvers. In terms of matrix-vector products, GMRES was of course the fastest,
because it uses only one matrix-vector product per iteration, where the other methods use two.
In terms of time however, GMRES became better compared to the other solvers for better
preconditioners. For the preconditioner constructed with a tolerance of 0.1, GMRES had 35
wins where BiCGSTAB had 24, with a tolerance of 1.0, they both had 19 wins, and with a
tolerance of 10, BiCGSTAB had 19 wins and GMRES 15. Because GMRES got worse for
sparser preconditioners. This also meant that the other solvers got relatively more wins.

Here it must be noted that we used a restart value of 100 for GMRES, but for really large
problems, where memory use is an issue, we would not be able to use such a high value for the
restart. In such a case, it would be more fair to have a value of restart that makes the memory
use of GMRES similar to that of the other methods. We tried this, but this gave such bad
results (worse than TFQMR), that we decided to use a value of 100.

If we do not only look at the winners, but at a slightly bigger region of interest, say τ ≤ 2,
we see that CORS, BiCGSTAB, GMRES and CGS are the most competitive solvers. For the
best preconditioner, the one with a drop tolerance of 0.1, CORS is even on top after τ ≈ 1.7
(see Figure 5).

We also see that CORS is considerably faster in terms of matrix-vector products (see
Figures 2-4). It performs a bit worse in terms of time is mainly due to the amount of scalar times
a vector plus a different vector operations, or simply Scalar A X Plus Y (SAXPY) operations.
Those are the most expensive operations done in the algorithms themselves. CORS uses 12 of
such per iteration where BiCOR for example only uses 6.

We now classify the solvers according to the information we gathered about the different
problems, see Appendix A.2. In this case, we excluded solvers like QMR and TFQMR from
this analysis, because they performed very badly. We also only name the solvers where we saw
something notable. First, we see that the bigger the problem, the better CORS and BiCGSTAB
perform and the worse GMRES performs. This is mainly of interest, because one tends to use
iterative methods only for bigger problems. For smaller problems one could as well just use
direct methods.

Figure 5: Performance profile with a tolerance of 0.1 on a smaller region: Ratio of CPU time

20

Solver breakdown iterations NAN

CORS 1 2 0
BiCOR 11 3 0
BiCGSTAB 7 0 0
BiCG 5 2 0
CGS 0 7 0
GMRES(100) 0 12 0
BiCGSTAB(3) 0 8 2
QMR 0 13 0
TFQMR 0 25 0

Table 4: Failures with a perconditioner tolerance of 0.1

We also investigated if the percentage of pattern symmetry and value symmetry mattered.
Here we see that GMRES performs better for the highly nonsymmetric problems, and CORS
and BiCGSTAB for the more symmetric problems. We also noted that for diagonal dominant
matrices, BiCGSTAB was better and GMRES worse.

Now we get to the kind of problems. Here we see that GMRES performed better for
economic, and semiconductor device problems. BiCGSTAB performed better for circuit sim-
ulation, computational fluid dynamics, and semiconductor device problems. We also saw that
CORS performed considerably well on circuit simulation problems, and that BiCOR and BiCG
were very efficient for the electromagnetics problems.

7.3.2 Reliability

If we look at a region of large values of τ in the performance profiles in Figure 2, we find that
CORS ends up solving 4 more problems that the two next best solvers, BiCG and CGS. For this
preconditioner, CORS only fails to solve three problems. CORS also ends up being on top for
the preconditioner constructed with a tolerance of 1.0. For the preconditioner constructed with
a tolerance of 10, we see that BiCGSTAB(`) ends up on top. CORS is the second best solver,
and it’s performance comes very close to BiCGSTAB(`) if we look at values of τ greater than
20, but this is not shown in the performance profiles. If we look at the other preconditioner
tolerances, we see that BiCGSTAB(`) does not even come close to the performance of CORS.

We’re now interested in what happens when CORS fails, since it’s the solver that has the
least amount of failures. We find that for the preconditioner constructed with a tolerance of 0.1,
CORS exceeds the maximum amount of iterations twice, and breaks down once. A breakdown
in the implementations of CORS, BiCOR, BiCGSTAB, CGS and BiCG means that |ρj−1| < un
and |ρj−1| < u‖rj−1‖2‖r′j−1‖2 where n is the size of the problem, u is the machine precision
and the other variables as in Algorithm 5. This is as it is adopted in the HSL. The GMRES
method, being an optimal method, can not break down, so for GMRES, we do not see any
breakdowns. BiCGSTAB(`) returned quite a lot of not-a-number answers, which might be due
to the breakdown implementation which is different from that the HSL.

So let’s look at the only case where CORS broke down for the best tolerance we tested. This
was on the torso1 matrix. For this matrix, we find that not only CORS, but also BiCGSTAB
broke down, BiCOR and BiCG converged, and the others exceeded the maximum amount of
allowed iterations. If we look at the convergence history of the 2-norm of the residual of CORS,
BiCOR, BiCGSTAB, BiCG, CGS and GMRES, we see that for BiCOR and BiCG the residual

21

started reducing at a nice rate after about 200 iterations. For GMRES, the residual stayed
constant after about 80 iterations, and for CGS the residual heavily fluctuated somewhere above
105. The residual of BICGSTAB suddenly increased after about 300 iterations and the method
broke down after doing a few more steps. CORS at first showed about the same behaviour as
CGS, then fluctuated less heavily, but did still not converge, and after that, CORS broke down.

The two matrices where CORS took too many iterations were the cryg10000 and invextr1 new

matrices. For the first one, CORS did not seem to converge at all, but for the last one, CORS
converged at steady rate, but unfortunately not fast enough to complete within the set maxi-
mum amount of iterations, as can be seen in Figure 6(a). What we can also see in this figure is
the relatively wild behaviour of CGS due to the squaring of the residual, and the behaviour of
GMRES, which usually converges steadily, but in this case not at all. What we can conclude,
is that CORS is able to solve most problems, and therefore is the most robust method for this
preconditioner.

In Figure 6(b), we again see that here CGS is a lot wilder than CORS, which seems to be
the usual behaviour. This is probably the reason why CORS is more stable than CGS, while
they are based on the same ideas. In this figure we also see the breakdown of BiCGSTAB. The
method first behaves like other solvers, but then sees a sudden increase in the residual after
which the residual stays the same and then the method breaks down. This is the standard
behaviour we observed for this method and other methods.

The default drop tolerance used by ILUPACK is 0.01 instead of the 0.1 we used as lowest
tolerance. We did this mainly to make sure the solvers did not complete too quickly, and so
we could find out which solver was most robust. The construction of the preconditioner for the
bigger problems only took a small amount of time compared to solving the problem itself, so
it would be reasonable to use a better preconditioner. So we ran some more tests. We tried
several better preconditioners on the matrices that failed for all methods for the preconditioner
with a drop tolerance of 0.1. In those tests, CORS again turned out to be the most reliable
method in every test. Some other solvers were able to compete with CORS in some tests, but
CORS was the only one that turned out to be the most reliable in every single test.

If we look at BiCOR we see that a lot of breakdowns occur. We checked that in all cases the
value of ρ was indeed smaller than the machine precision. Two new methods, BiCOR Stabilised
(BiCORSTAB) [28] and Composite Step BiCOR (CSBiCOR) [26], have already been developed
to prevent those failures. We however did not have a chance to test those methods.

(a) invextr1 new (b) para-6

Figure 6: Convergence history of the relative residual on two problems

22

The last question we tried to answer was how the distribution of the eigenvalues of the
preconditioned matrix affected convergence. If the preconditioner is good, then AM−1 is close
to identity, so we may expect that most of the eigenvalues are close to one. We calculated the
eigenvalues of the 20 smallest matrices, but it was not possible to draw any conclusions.

Figure 7: Typical distribution of eigenvalues, in this case of the powersim matrix.

8 Conclusion

When we started comparing CORS and BiCOR to other iterative methods, we had no idea
whether they were competitive or not. In our experiments we found that BiCOR broke down
many times, and therefore is not very attractive for solving realistic applications. We also found
that the BiCGSTAB method and GMRES method with sufficiently large restart, are the most
popular methods in use today for a reason: they turned out to be the fastest methods. In terms
of stability however, CORS proves to be the best. It might not be as fast, mostly due to the
larger amount of SAXPY operations, but reliability comes with a cost. We also see this when
we compare for example BiCGSTAB(`) to normal BiCGSTAB, which is generally a lot faster
than BiCGSTAB(`).

The most interesting case when using iterative methods is a large problem with a good
preconditioner. Bigger problems are more vulnerable to the performance of the methods, simply
because they take longer to solve. Also, because ILUPACK constructs the preconditioners quite
fast, with an amount of nonzeros of the order of the problem itself, one most likely wants to
use a better preconditioner. We found CORS to excel in both cases: it was better for better
preconditioners, and also faster for bigger problems in comparison with other solvers.

We conclude that the CORS method turns out to be a valuable addition to the long list
of iterative methods already available.

9 Acknowledgments

I would really like to thank Bruno Carpentieri for all his support and help during every step
of the process and for developing BiCOR and CORS in the first place to make this research
possible. My thanks also go to Matthias Bollhöfer (Institute of “Computational Mathematics”,

23

Technische Universität Braunschweig, Germany) for his support in the usage of the ILUPACK
software. And finally, I would like to thank Sjoerd Meesters, Paulus Meessen and Jeroen Lanting
for thoroughly reading the manuscript and giving advice on how to improve it, and Diederik
Perdok, who read the manuscript with no knowledge of numerical mathematics in general, but
still gave really good comments.

References

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of Applied Mathematics, 9:17–29, 1951.

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1993. Obtainable from
research.att.com:/netlib/linalg using ftp.

[3] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra. Matrix market: A
web resource for test matrix collections. In The Quality of Numerical Software: Assessment
and Enhancement, pages 125–137. Chapman & Hall, 1997.

[4] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from inverse–based ILUs.
27(5):1627–1650, 2006.

[5] M. Bollhöfer, Y. Saad, and O. Schenk. ILUPACK — preconditioning software package,
June 2011. http://ilupack.tu-bs.de/. Release 2.4.

[6] C. Brezinski and L. Wuytack. Projection methods for systems of equations. North Holland,
1997.

[7] R. L. Burden and J. D. Faires. Numerical Analysis. Thompson, 8 edition, 2005.

[8] B. Carpentieri, Y.-F. Jing, and T.-Z. Huang. The BiCOR and CORS algorithms for solving
nonsymmetric linear systems. SIAM J. Scientific Computing, 2011. In press.

[9] B. Carpentieri, Y.-F. Jing, T.-Z. Huang, W.-C. Pi, and X.-Q. Sheng. A novel family of
iterative solvers for Method of Moments discretizations of Maxwells equations. In L. Gürel,
editor, CEM’11 Computational Electromagnetics, pages 85–90. Bilkent University, Compu-
tational Electromagnetics Research Center, August 2011.

[10] T. A. Davis. University of florida sparse matrix collection. Technical report, 1994.

[11] E. D. Dolan and J. J. More. Benchmarking optimization software with performance profiles.
Math. Programming, Ser. A, 91:201–212, 2002.

[12] J. Dongarra, V. Eijkhout, and A. Kalhan. Reverse communication interface for linear
algebra templates for iterative methods. Technical Report UT-CS-95-291, May 1995.

[13] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical linear
algebra for high-performance computers, volume 7 of Software, Environments, and Tools.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.

[14] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a
conjugate gradient method. SIAM Journal on Numerical Analysis, 21(2):352–362, Apr.
1984.

24

[15] R. Fletcher. Conjugate gradient methods for indefinite systems, volume 506 of Lecture
Notes Math., pages 73–89. Springer-Verlag, Berlin, 1976.

[16] D. R. Fokkema. Bicgstab(ell), full version. http://www.staff.science.uu.nl/ vorst102/software.html.

[17] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. A set of GMRES routines for real
and complex arithmetics on high performance computers. ACM Trans. Math. Softw.,
31(2):228–238, 2005.

[18] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-
Hermitian linear systems. Numerische Mathematik, 60:315–340, 1991.

[19] R. W. Freund and N. M. Nachtigal. QMRPACK: A package of QMR algorithms. ACM
Trans. Math. Softw, 22(1):46–77, 1996.

[20] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

[21] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

[22] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002.

[23] HSL(2011). A collection of fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/.

[24] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. The American Mathe-
matical Monthly, 105(10):889–899, 1998.

[25] Y.-F. Jing, B. Carpentieri, and T.-Z. Huang. Experiments with Lanczos biconjugate A-
orthonormalization methods for MoM discretizations of Maxwell’s equations. Progress In
Electromagnetics Research, PIER 99, pages 427–451, 2009.

[26] Y.-F. Jing, T.-Z. Huang, B. Carpentieri, and Y. Duan. Investigating the composite step
biconjugate A-orthogonal residual method for non-hermitian linear systems in Electromag-
netics. In L. Gürel, editor, CEM’11 Computational Electromagnetics, pages 80–84. Bilkent
University, Computational Electromagnetics Research Center, August 2011.

[27] Y.-F. Jing, T.-Z. Huang, Y. Duan, and B. Carpentieri. A comparative study of iterative so-
lutions to linear systems arising in quantum mechanics. Journal of Computational Physics,
229:8511–8520, November 2010.

[28] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe,
and B. Carpentieri. Lanczos-type variants of the COCR method for complex nonsymmetric
linear systems. Journal of Computational Physics, 228(17):6376–6394, 2009.

[29] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Nat. Bur. Standards, 45:255–282, 1950.

[30] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl.
Bur. Stand, 49:33–53, 1952.

[31] S. J. Leon. Linear algebra with applications. Prentice-Hall, pub-PH:adr, seventh edition,
2006.

25

[32] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric
matrices. Math. Comp., 44:105–124, 1985.

[33] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer, New York, 2000.

[34] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2, 1994.

[35] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[36] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 7:856–869,
1986.

[37] G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(L) for linear equations involving unsym-
metric matrices with complex spectrum. Elect. Trans. Numer. Anal., 1:11–32, 1993.

[38] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.
Scientific and Statistical Computing, 10:36–52, 1989.

[39] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing,
13:631–644, 1992.

[40] H. A. van der Vorst. Iterative Krylov methods for large linear systems, volume 13 of
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, UK, 2003.

[41] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science No. 32,
Her Majesty’s Stationery Office, London, 1963. Also published by Prentice-Hall, Englewood
Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

26

Appendices

In the appendices, one can find a description of all problems used, the implementation and
documentation of the CORS and BiCOR methods, and the two main programs used in the
analysis of the results. In addition to this, two Python modules were written, 5 more Python
scripts, and 4 more Fortran applications. Since the appendix would be a lot longer if those were
also included, and does not really add any valuable content to the thesis, those were left out.

27

A Problems

A.1 Problem types

List taken from http://www.cise.ufl.edu/research/sparse/matrices/kind.html

A.1.1 Problems with 2D/3D geometry

• 2D/3D problem

• acoustics problem

• computational fluid dynamics problem

• computer graphics/vision problem

• electromagnetics problem

• materials problem

• model reduction problem

• robotics problem

• semiconductor device problem

• structural problem

• thermal problem

A.1.2 Problems that normally do not have 2D/3D geometry

• chemical process simulation problem

• circuit simulation problem

• counter-example problem

• economic problem

• frequency-domain circuit simulation problem

• least squares problem

• linear programming problem

• optimization problem

• power network problem

• statistical/mathematical problem

• theoretical/quantum chemistry problem

• combinatorial problem

• graph problems

A.2 Problem list

28

http://www.cise.ufl.edu/research/sparse/matrices/kind.html

matrix name number of
rows

nonzeros nonzero
pattern
symmetry

numeric
value
symmetry

row diago-
nal domi-
nance

column
diagonal
domi-
nance

kind

torso1 116,158 8,516,500 42% 0% 0.00% 0.15% 2D/3D problem

shermanACb 18,510 145,149 15% 3% 38.10% 37.36% 2D/3D problem

av41092 41,092 1,683,902 0% 0% 0.00% 0.00% 2D/3D problem

Baumann 112,211 748,331 100% 0% 16.58% 97.05% 2D/3D problem

heart3 2,339 680,341 100% 0% 0.00% 0.00% 2D/3D problem

chem master1 40,401 201,201 100% 0% 1.98% 100.00% 2D/3D problem

e40r0100 17,281 553,562 31% 0% 0.14% 0.14% 2D/3D problem

Zd Jac3 22,835 1,915,726 0% 0% 0.00% 0.00% chemical process simulation problem

std1 Jac2 db 21,982 498,771 33% 0% 66.96% 54.41% chemical process simulation problem

memplus 17,758 99,147 100% 50% 75.96% 87.85% circuit simulation problem

ASIC 320k 321,821 1,931,828 100% 36% 71.29% 71.96% circuit simulation problem

hcircuit 105,676 513,072 100% 20% 83.19% 84.66% circuit simulation problem

scircuit 170,998 958,936 100% 80% 97.64% 97.39% circuit simulation problem

ASIC 680k 682,862 2,638,997 100% 0% 85.46% 94.34% circuit simulation problem

circuit 3 12,127 48,137 77% 30% 61.21% 63.71% circuit simulation problem

transient 178,866 961,368 100% 24% 90.18% 90.74% circuit simulation problem

trans4 116,835 749,800 85% 30% 57.54% 52.20% circuit simulation problem sequence

lung2 109,460 492,564 57% 0% 49.61% 49.61% computational fluid dynamics problem

airfoil 2d 14,214 259,688 98% 0% 4.48% 18.01% computational fluid dynamics problem

atmosmodl 1,489,752 10,319,760 100% 67% 100.00% 100.00% computational fluid dynamics problem

Ill Stokes 20,896 191,368 99% 33% 17.67% 17.58% computational fluid dynamics problem

atmosmodd 1,270,432 8,814,880 100% 67% 100.00% 100.00% computational fluid dynamics problem

goodwin 7,320 324,772 64% 0% 4.09% 0.17% computational fluid dynamics problem

poisson3Db 85,623 2,374,949 100% 0% 2.04% 10.50% computational fluid dynamics problem

invextr1 new 30,412 1,793,881 97% 72% 2.98% 5.29% computational fluid dynamics problem

GT01R 7,980 430,909 88% 0% 3.72% 4.11% computational fluid dynamics problem

raefsky1 3,242 293,409 100% 9% 25.87% 25.87% computational fluid dynamics problem sequence

cage11 39,082 559,722 100% 18% 97.40% 92.67% directed weighted graph

language 399,130 1,216,334 6% 0% 81.25% 78.62% directed weighted graph

psmigr 2 3,140 540,022 48% 0% 0.00% 0.00% economic problem

g7jac160 47,430 564,952 3% 0% 25.94% 28.87% economic problem

g7jac060 17,730 183,325 4% 0% 25.87% 29.20% economic problem

mark3jac040 18,289 106,803 7% 1% 23.17% 27.14% economic problem

jan99jac040 13,694 72,734 0% 0% 29.89% 65.81% economic problem

mark3jac080sc 36,609 214,643 7% 1% 17.44% 29.55% economic problem

g7jac140 41,490 488,633 3% 0% 25.95% 28.91% economic problem

fp 7,548 834,222 76% 0% 3.11% 3.11% electromagnetics problem

dw8192 8,192 41,746 96% 92% 10.64% 10.64% electromagnetics problem

utm5940 5,940 83,842 53% 0% 12.82% 15.57% electromagnetics problem

tmt unsym 917,825 4,584,801 100% 0% 49.95% 49.96% electromagnetics problem

viscoplastic2 32,769 381,326 57% 0% 43.94% 8.07% materials problem

cryg10000 10,000 49,699 100% 0% 54.72% 1.97% materials problem

inlet 11,730 328,323 61% 0% 3.30% 1.50% model reduction problem

flowmeter5 9,669 67,391 100% 6% 73.72% 73.62% model reduction problem

chipcool1 20,082 281,150 100% 9% 4.17% 4.95% model reduction problem

crashbasis 160,000 1,750,416 55% 0% 49.73% 95.75% optimization problem

hvdc1 24,842 158,426 98% 10% 5.41% 4.58% power network problem

powersim 15,838 64,424 59% 53% 36.49% 49.09% power network problem

TSOPF RS b39 c19 38,098 684,206 6% 0% 0.49% 0.49% power network problem

nmos3 18,588 237,130 100% 17% 18.15% 19.91% semiconductor device problem

matrix 9 103,430 1,205,518 100% 17% 10.99% 34.87% semiconductor device problem

matrix-new 3 125,329 893,984 99% 28% 57.78% 62.60% semiconductor device problem

igbt3 10,938 130,500 100% 17% 25.60% 3.74% semiconductor device problem

2D 27628 bjtcai 27,628 206,670 100% 22% 43.23% 49.79% semiconductor device problem

ohne2 181,343 6,869,939 100% 9% 23.86% 2.09% semiconductor device problem

3D 51448 3D 51,448 537,038 99% 19% 34.34% 44.88% semiconductor device problem

3D 28984 Tetra 28,984 285,092 99% 36% 47.07% 49.30% semiconductor device problem

2D 54019 highK 54,019 486,129 100% 19% 31.67% 43.35% semiconductor device problem

ibm matrix 2 51,448 537,038 99% 19% 35.72% 44.57% semiconductor device problem

wang3 26,064 177,168 100% 98% 84.12% 85.09% semiconductor device problem

sme3Db 29,067 2,081,063 100% 44% 0.00% 0.00% structural problem

sme3Da 12,504 874,887 100% 44% 0.00% 0.00% structural problem

t2d q4 9,801 87,025 100% 69% 74.97% 75.16% structural problem sequence

venkat50 62,424 1,717,777 100% 6% 0.00% 0.00% subsequent computational fluid dynamics problem

barrier2-10 115,625 2,158,759 100% 20% 27.31% 4.96% subsequent semiconductor device problem

para-6 155,924 2,094,873 100% 37% 27.60% 4.02% subsequent semiconductor device problem

barrier2-4 113,076 2,129,496 100% 19% 25.31% 5.07% subsequent semiconductor device problem

para-9 155,924 2,094,873 100% 18% 27.71% 4.02% subsequent semiconductor device problem

epb1 14,734 95,053 73% 0% 52.65% 60.66% thermal problem

thermomech dK 204,316 2,846,228 100% 67% 0.00% 0.00% thermal problem

ted A 10,605 424,587 57% 11% 0.00% 0.00% thermal problem

FEM 3D thermal1 17,880 430,740 100% 95% 0.00% 0.00% thermal problem

B Implementation of BiCOR

B.1 User documentation

The implementation of the algorithm is based on the methods used in the Harwell Subroutine
Library (HSL) [23]. Since the implementation is quite similar, the documentation is also quite
similar to the documentation for the various subroutines in the HSL.

B.1.1 Argument lists and calling sequence

B.1.1.1 Initialization of the control parameters

The following subroutines have to be called before using the algorithm with BICORA(D). For
single precision we have

CALL BICORI(ICNTL, CNTL, ISAVE, RSAVE)

and for double precision we have

CALL BICORID(ICNTL, CNTL, ISAVE, RSAVE)

where

ICNTL is an INTEGER array of length 8 that does not have to be set by the user. On
return, it contains the default values as described in section B.1.2.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does
not have to be set by the user. On return, it contains the default values and
described in section B.1.2.

ISAVE is an INTEGER array of length 17 that must not be altered by the user.
RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must

not be altered by the user.

B.1.1.2 Solving Ax=b

Here we will actually solve Ax = b. For single precision we have

CALL BICORA(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
+ ISAVE, RSAVE)

and for double precision we have

CALL BICORAD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
+ ISAVE, RSAVE)

where

31

IACT is an INTEGER that indicate the action the user has to preform on every return
of the BICORA/AD routines. Prior to the first call to BICORA/AD, IACT should
be set to 0. Possible values are as follows:

-1 An error occurred, and the user must terminate the computation. The rea-
son for the error is in INFO(1). See section B.1.3 for more information.

1 If ICNTL(4)=0 (the default value), convergence has been achieved, and the
user should terminate the computation. If ICNTL(4) is nonzero, the
user may test for convergence. If convergence has not been achieved,
BICORA/AD should be called again, without changes to its arguments.

2 The user must preform the matrix-vector product

y = Az

and recall BICORA/AD. The vectors y and z are in columns LOCY and
LOCZ of array W respectively. The user should not change z.

3 The user must preform the preconditioning operation

y = Mz

where M is the preconditioner. The vectors y and z are in columns
LOCY and LOCZ of array W respectively. The user should not change z.
Preconditioning is only used when ICNTL(3) is nonzero.

4 The user must preform the transpose matrix-vector product

y = AT z

and recall BICORA/AD. The vectors y and z are in columns LOCY and
LOCZ of array W respectively. The user should not change z.

5 The user must preform the transpose preconditioning operation

y = MT z

where M is the preconditioner. The vectors y and z are in columns
LOCY and LOCZ of array W respectively. The user should not change z.
Preconditioning is only used when ICNTL(3) is nonzero.

N is an INTEGER variable that must be set by the user to the order of the matrix
A. The variable must be preserved between calls to BICORA/AD. This argument
is not altered by the routine.

W is a REAL (DOUBLE PRECISION in the D version) two-dimensional array with
dimensions (LWD, 8). Prior to the first call to BICORA/AD, the first column
must hold the right hand side b. IF ICNTL(5) is nonzero, the second column
must contain the initial estimate of the solution x. On exit, the first column
holds the residual r = b − Ax̂ and the second column holds the estimate of
the solution x. Other than the vector contained in the LOCYth column of W, W
should remain unchanged between calls to BICORA/AD.

32

LWD is an INTEGER variable that must be set by the user to the first dimension of
W. This argument is not altered by the routine. It should be greater than N.

LOCY, LOCZ are INTEGER variables that need not be set by the user. On return with IACT

> 1, they indicate which columns of W should be used to preform the operations
as specified under IACT (see above). These arguments must not be altered by
the user between calls to BICORA/AD.

RESID is a REAL (DOUBLE PRECISION in the D version) variable that need not be set
by the user. On return with IACT=1, it contains the 2-norm of the residual
vector ‖b−Ax̂‖2, where x̂ is the current estimate of the solution.

ICNTL is an INTEGER array of length 8 that has to be set by the user. The default
values are set by a call to BICORA/AD as described in section B.1.1.1. Details
of the control parameters are given in section B.1.2. This argument is not
altered by the routine.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does
not have to be set by the user. that has to be set by the user. The default
values are set by a call to BICORA/AD as described in section B.1.1.1. Details
of the control parameters are given in section B.1.2. This argument is not
altered by the routine.

INFO is an INTEGER array of length 4 that need not be set by the user. It is used to
store information about the subroutine. On return of BICORA/AD, INFO(1)
tells if the subroutine was successful (value 0) or if an error occurred (non-zero
values). More information about this is in section B.1.3. INFO(2) holds the
amount of iterations preformed by the subroutine. INFO(3) and INFO(4) are
unused.

ISAVE is an INTEGER array of length 17 that must not be altered by the user.
RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must

not be altered by the user.

B.1.2 Control parameters

ICNTL and CNTL contain the control parameters of BICORA/AD. ICNTL controls the actions
BICORA/AD takes, and CNTL controls the tolerances used by BICORA/AD. The default values are
set by BICORI/ID.

ICNTL(1) is the stream number for error messages and has default value 6. Printing of
error messages is suppressed if ICNTL(1) ≤ 0.

ICNTL(2) is the stream number for warning messages and has default value 6. Printing
of warning messages is suppressed if ICNTL(1) ≤ 0.

ICNTL(3) controls whether the user wishes to use preconditioning. It has default value
0 and in this case no preconditioning is used. If ICNTL(3) is non-zero, the
user will be expected to preform preconditioning when IACT = 3.

ICNTL(4) controls whether the convergence test offered by BICORA/AD is used. It
has default value 0 and in this case the computed solution x̂ is ac-
cepted if the 2-norm of the residual (‖b − Ax̂‖2) is less or equal to
max(CNTL(1)*(CNTL(2)+‖x‖2*CNTL(3)),CNTL(4)), If the user does not
want to use this test, ICNTL(4) should be non-zero. In this case, the user
will be expected to test for convergence when IACT = 1.

33

ICNTL(5) controls whether the user wishes to supply an initial estimate of the solution
x. It has default value 0 and in this case the initial estimate is set to the zero
vector. If the user wishes to supply an initial estimate, ICNTL(5) should be
non-zero. In this case, the initial estimate should be put in the second column
of W prior to the first call to BICORA/AD.

ICNTL(6) determines the maximum number of iterations allowed. It has default value
-1, and in this case the maximum number of iterations is equal to the order
of the matrix A (N). If the user wishes to use a different maximum number
of iterations, ICNTL(6) should be set to this number. In case of a negative
number, the default will be used.

ICNTL(7),
ICNTL(8)

have default value 0 and are unused by BICORA/AD

CNTL(1) is one of the two convergence tolerances, as described under ICNTL(4).
CNTL(1) has default value

√
u, where u is the relative machine precision.

If ICNTL(4) is non-zero, this will not be used. See section B.2 for more infor-
mation.

CNTL(2) is the first variable used in the normwise backward error, and has a default
value ‖b‖2. The default value is set in BICORA/AD, not in BICORI/ID. See
section B.2 for more information.

CNTL(3) is the second variable used in the normwise backward error, and has a default
value of zero. If this is left zero, the norm of x will also not be calculated. See
section B.2 for more information.

CNTL(4) is one of the two convergence tolerances, as described under ICNTL(4).
CNTL(2) has default value 0. If ICNTL(4) is non-zero, this will not be used.
See section B.2 for more information.

CNTL(5) is the breakdown tolerance. It has default value u, where u is the relative
machine precision. If ρ is close enough to zero according to this tolerance, the
method has broken down. See section B.2 for more information.

CNTL(4),
CNTL(5)

have default value 0 and are unused by BICORA/AD

B.1.3 Error values

Upon the return of BICORA/AD, negative values for INFO(1) indicate an error and positive
values indicate a warning. If everything went well, the value should be zero. Error messages
are written to ICNTL(1) and warnings to ICNTL(2). Possible non-zero values for INFO(1) are:

-1 The value of N is out of range (< 1). There is an immediate return without any input
parameters changed.

-2 The value of LWD is out of range (< N). There is an immediate return without any input
parameters changed.

-3 The algorithm has broken down.

-4 The maximum amount of iterations determined by ICNTL(6) if it is not the default or N if
ICNTL(6) is the default has been exceeded.

1 The convergence tolerance specified by the user in CNTL(1) lies outside the interval (u, 1.0)
where u is the machine precision. CNTL(1) is reset to the default value

√
u.

34

B.1.4 General information

Files needed to run the algorithm:

bicor.f, ddeps.f

Routines called:

BLAS SNRM2/DNRM2, SCOPY/DCOPY, SAXPY/DAXPY, SSCAL/DSCAL, SDOT/DDOT

HSL FD15A/AD

Restriction:

LWD ≥ N ≥ 1

B.2 Implementation

35

1 SUBROUTINE BICORID(ICNTL,CNTL,ISAVE,RSAVE)
2 C Variables passed to the subroutine
3 IMPLICIT NONE
4 DOUBLE PRECISION CNTL(5)
5 INTEGER ICNTL(8)
6 INTEGER ISAVE(17)
7 DOUBLE PRECISION RSAVE(9)
8 C Local variables
9 INTEGER I

10 DOUBLE PRECISION ZERO
11 PARAMETER (ZERO=0.0D+0)
12 DOUBLE PRECISION FD15AD
13 EXTERNAL FD15AD
14 INTRINSIC SQRT
15 ICNTL(1) = 6
16 ICNTL(2) = 6
17 ICNTL(3) = 0
18 ICNTL(4) = 0
19 ICNTL(5) = 0
20 ICNTL(6) = -1
21 ICNTL(7) = 0
22 ICNTL(8) = 0
23 CNTL(1) = SQRT(FD15AD(’E’))
24 CNTL(2) = ZERO
25 CNTL(3) = ZERO
26 CNTL(4) = ZERO
27 CNTL(5) = FD15AD(’E’)
28 DO 10 I = 1, 15
29 ISAVE(I) = 0
30 10 CONTINUE
31 DO 20 I = 1, 9
32 RSAVE(I) = 0.0
33 20 CONTINUE
34 RETURN
35 END
36 SUBROUTINE BICORAD(IACT,N,W,LDW,LOCY,LOCZ,RESID,ICNTL,CNTL,INFO,
37 + ISAVE,RSAVE)
38 C Variables passed to the subroutine
39 IMPLICIT NONE
40 DOUBLE PRECISION RESID
41 INTEGER IACT,LDW,LOCY,LOCZ,N
42 DOUBLE PRECISION CNTL(5),W(LDW,9)
43 INTEGER ICNTL(8),INFO(4)
44 INTEGER ISAVE(17)
45 DOUBLE PRECISION RSAVE(9)
46 C Local variables
47 DOUBLE PRECISION ONE, ZERO
48 PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
49 DOUBLE PRECISION BNRM2, RNRM2, RTNRM2, ALPHA, BETA, RHO, RHO1,
50 + XNRM2
51 INTEGER B, R, X, RPRM, ZR, ZRPRM, ZRHAT, P, PPRM, Q, QPRM,
52 + QPRMHAT, ZQPRMHAT, ITMAX, IPOS, I
53 DOUBLE PRECISION DDOT, DNRM2, FD15AD
54 EXTERNAL DDOT, DNRM2, FD15AD
55 INTRINSIC ABS,MAX,SQRT
56 EXTERNAL DAXPY,DCOPY,DSCAL
57 C Code
58 C Load all the local variables as they were on the last run
59 IPOS = ISAVE(1)
60 ITMAX = ISAVE(2)

61 B = ISAVE(3)
62 X = ISAVE(4)
63 R = ISAVE(5)
64 RPRM = ISAVE(6)
65 ZR = ISAVE(7)
66 ZRPRM = ISAVE(8)
67 ZRHAT = ISAVE(9)
68 P = ISAVE(10)
69 PPRM = ISAVE(11)
70 Q = ISAVE(12)
71 QPRM = ISAVE(13)
72 QPRMHAT = ISAVE(14)
73 ZQPRMHAT = ISAVE(15)
74 BNRM2 = RSAVE(1)
75 ALPHA = RSAVE(2)
76 BETA = RSAVE(3)
77 RHO = RSAVE(4)
78 RHO1 = RSAVE(5)
79 XNRM2 = RSAVE(6)
80 IF (IACT.EQ.0) GO TO 10
81 IF (IACT.LT.0) GO TO 1000
82 IF (IACT.EQ.1 .AND. ICNTL(4).EQ.0) GO TO 1000
83 IF (IACT.EQ.1 .AND. BNRM2.EQ.ZERO) GO TO 1000
84 IF (IPOS.EQ.1) GO TO 40
85 IF (IPOS.EQ.2) GO TO 60
86 IF (IPOS.EQ.3) GO TO 70
87 IF (IPOS.EQ.4) GO TO 80
88 IF (IPOS.EQ.5) GO TO 90
89 IF (IPOS.EQ.6) GO TO 100
90 IF (IPOS.EQ.7) GO TO 110
91 IF (IPOS.EQ.8) GO TO 120
92 10 CONTINUE
93 INFO(1) = 0
94 C No negative order possible
95 IF (N.LE.0) THEN
96 INFO(1) = -1
97 C W can’t be larger than the order
98 ELSE IF (LDW.LT.MAX(1,N)) THEN
99 INFO(1) = -2

100 END IF
101 C Something went wrong, return an error
102 IF (INFO(1).LT.0) THEN
103 IACT = -1
104 IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
105 GO TO 1000
106 END IF
107 B = 1
108 X = 2
109 R = 1
110 RPRM = 3
111 ZR = 4
112 ZRPRM = 5
113 ZRHAT = 6
114 P = 7
115 PPRM = 8
116 Q = 9
117 QPRM = 3
118 QPRMHAT = 6
119 ZQPRMHAT = 10
120 INFO(2) = 0

36

121 C Max amount of iterations is N
122 ITMAX = N
123 C or ICNTL(6) if specified
124 IF (ICNTL(6).GT.0) ITMAX = ICNTL(6)
125 C If the 2 norm of b is zero, that means that b is zero, so the solution
126 C is zero, the residual is zero, everything is zero
127 BNRM2 = DNRM2(N,W(1,B),1)
128 IF (BNRM2.EQ.ZERO) THEN
129 IACT = 1
130 DO 20 I = 1,N
131 W(I,X) = ZERO
132 W(I,B) = ZERO
133 20 CONTINUE
134 RESID = ZERO
135 GO TO 1000
136 END IF
137 C In this case, the user may test for convergence when IACT = 1 is
138 C returned.
139 IF (ICNTL(4).EQ.0) THEN
140 IF (CNTL(1).LT.FD15AD(’E’) .OR. CNTL(1).GT.ONE) THEN
141 INFO(1) = 1
142 IF (ICNTL(2).GT.0) THEN
143 WRITE (ICNTL(2),FMT=9010) INFO(1)
144 WRITE (ICNTL(2),FMT=9020)
145 END IF
146 CNTL(1) = SQRT(FD15AD(’E’))
147 END IF
148 IF (CNTL(2).EQ.ZERO) THEN
149 CNTL(2) = BNRM2
150 END IF
151 END IF
152 C Initial estimate for x is the 0 vector
153 IF (ICNTL(5).EQ.0) THEN
154 DO 30 I = 1,N
155 W(I,X) = ZERO
156 30 CONTINUE
157 GO TO 50
158 ELSE
159 C or if ICNTL(5) is not 0, you need to have specified W(1,X)
160 IF (DNRM2(N,W(1,X),1).EQ.ZERO) GO TO 50
161 IPOS = 1
162 IACT = 2
163 LOCY = P
164 LOCZ = X
165 GO TO 1000
166 END IF
167 C We have x and b, so r = -p (is Ax) + r (is b), so b-Ax
168 C We don’t need b any more
169 40 CALL DAXPY(N,-ONE,W(1,P),1,W(1,R),1)
170 50 CONTINUE
171 C Set r prime as Ar
172 IPOS = 2
173 IACT = 2
174 LOCY = RPRM
175 LOCZ = R
176 GO TO 1000
177 60 CONTINUE
178 C Calculate zr prime on the first run
179 IF (ICNTL(3).NE.0) THEN
180 IPOS = 3

181 IACT = 5
182 LOCY = ZRPRM
183 LOCZ = RPRM
184 GO TO 1000
185 ELSE
186 CALL DCOPY(N,W(1,RPRM),1,W(1,ZRPRM),1)
187 END IF
188 70 CONTINUE
189 INFO(2) = INFO(2) + 1
190 C Check maximum number of iterations has not been exceeded.
191 IF (INFO(2).GT.ITMAX) THEN
192 INFO(1) = -4
193 IACT = -1
194 IF (ICNTL(1).GT.0) THEN
195 WRITE (ICNTL(1),FMT=9000) INFO(1)
196 WRITE (ICNTL(1),FMT=9030) ITMAX
197 END IF
198 GO TO 1000
199 END IF
200 C Perform the preconditioning operation
201 IF (ICNTL(3).NE.0) THEN
202 IPOS = 4
203 IACT = 3
204 LOCY = ZR
205 LOCZ = R
206 GO TO 1000
207 ELSE
208 CALL DCOPY(N,W(1,R),1,W(1,ZR),1)
209 END IF
210 80 CONTINUE
211 C Calculate zr hat
212 IPOS = 5
213 IACT = 2
214 LOCY = ZRHAT
215 LOCZ = ZR
216 GO TO 1000
217 90 CONTINUE
218 C See if the algorithm broke down. Otherwise, we can use rho in the
219 C remaining part of the algorithm
220 RHO = DDOT(N, W(1,ZRPRM), 1, W(1,ZRHAT), 1)
221 IF (ABS(RHO).LT.CNTL(5)*N) THEN
222 RNRM2 = DNRM2(N,W(1,R),1)
223 RTNRM2 = DNRM2(N,W(1,RPRM),1)
224 IF (ABS(RHO).LT.CNTL(5)*RNRM2*RTNRM2) THEN
225 INFO(1) = -3
226 IACT = -1
227 IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
228 GO TO 1000
229 END IF
230 END IF
231 IF (INFO(2).GT.1) THEN
232 BETA = RHO/RHO1
233 CALL DSCAL(N,BETA,W(1,P),1)
234 CALL DAXPY(N,ONE,W(1,ZR),1,W(1,P),1)
235 CALL DSCAL(N,BETA,W(1,PPRM),1)
236 CALL DAXPY(N,ONE,W(1,ZRPRM),1,W(1,PPRM),1)
237 CALL DSCAL(N,BETA,W(1,Q),1)
238 CALL DAXPY(N,ONE,W(1,ZRHAT),1,W(1,Q),1)
239 ELSE
240 CALL DCOPY(N,W(1,ZR),1,W(1,P),1)

37

241 CALL DCOPY(N,W(1,ZRPRM),1,W(1,PPRM),1)
242 CALL DCOPY(N,W(1,ZRHAT),1,W(1,Q),1)
243 END IF
244 IPOS = 6
245 IACT = 4
246 LOCY = QPRMHAT
247 LOCZ = PPRM
248 GO TO 1000
249 100 CONTINUE
250 C Perform preconditioning
251 IF (ICNTL(3).NE.0) THEN
252 IPOS = 7
253 IACT = 5
254 LOCY = ZQPRMHAT
255 LOCZ = QPRMHAT
256 GO TO 1000
257 ELSE
258 CALL DCOPY(N,W(1,QPRMHAT),1,W(1,ZQPRMHAT),1)
259 END IF
260 110 CONTINUE
261 ALPHA = RHO/DDOT(N, W(1, ZQPRMHAT), 1, W(1,Q), 1)
262 CALL DAXPY(N,ALPHA,W(1,P),1,W(1,X),1)
263 CALL DAXPY(N,-ALPHA,W(1,Q),1,W(1,R),1)
264 CALL DAXPY(N,-ALPHA,W(1,ZQPRMHAT),1,W(1,ZRPRM),1)
265 RESID = DNRM2(N,W(1,R),1)
266 IPOS = 8
267 C The user can check the error if ICNTL(4) is non-zero at IACT.EQ.1
268 IF (ICNTL(4).NE.0) THEN
269 IACT = 1
270 GO TO 1000
271 ELSE
272 IF (CNTL(3).NE.ZERO) THEN
273 XNRM2 = DNRM2(N,W(1,X),1)
274 END IF
275 IF (RESID.LE.MAX(CNTL(1)*(CNTL(2)+XNRM2*CNTL(3)),CNTL(4))) THEN
276 IACT = 1
277 GO TO 1000
278 END IF
279 END IF
280 120 CONTINUE
281 RHO1 = RHO
282 GO TO 70
283 1000 CONTINUE
284 C Save all the local variables to use on the next run
285 ISAVE(1) = IPOS
286 ISAVE(2) = ITMAX
287 ISAVE(3) = B
288 ISAVE(4) = X
289 ISAVE(5) = R
290 ISAVE(6) = RPRM
291 ISAVE(7) = ZR
292 ISAVE(8) = ZRPRM
293 ISAVE(9) = ZRHAT
294 ISAVE(10) = P
295 ISAVE(11) = PPRM
296 ISAVE(12) = Q
297 ISAVE(13) = QPRM
298 ISAVE(14) = QPRMHAT
299 ISAVE(15) = ZQPRMHAT
300 RSAVE(1) = BNRM2

301 RSAVE(2) = ALPHA
302 RSAVE(3) = BETA
303 RSAVE(4) = RHO
304 RSAVE(5) = RHO1
305 RSAVE(6) = XNRM2
306 RETURN
307 9000 FORMAT (/’ Error message from BICOR. INFO(1) = ’,I4)
308 9010 FORMAT (/’ Warning message from BICOR. INFO(1) = ’,I4)
309 9020 FORMAT (’ Convergence tolerance out of range.’)
310 9030 FORMAT (’ Number of iterations required exceeds the maximum of ’,
311 + I8,/’ allowed by ICNTL(6)’)
312 END

38

C Implementation of CORS

C.1 User documentation

The implementation of the algorithm is based on the methods used in the Harwell Subroutine
Library (HSL) [23]. Since the implementation is quite similar, the documentation is also quite
similar to the documentation for the various subroutines in the HSL.

C.1.1 Argument lists and calling sequence

C.1.1.1 Initialization of the control parameters

The following subroutines have to be called before using the algorithm with CORSA(D). For
single precision we have

CALL CORSI(ICNTL, CNTL, ISAVE, RSAVE)

and for double precision we have

CALL CORSID(ICNTL, CNTL, ISAVE, RSAVE)

where

ICNTL is an INTEGER array of length 8 that does not have to be set by the user. On
return, it contains the default values as described in section C.1.2.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does
not have to be set by the user. On return, it contains the default values and
described in section C.1.2.

ISAVE is an INTEGER array of length 19 that must not be altered by the user.
RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must

not be altered by the user.

C.1.1.2 Solving Ax=b

Here we will actually solve Ax = b. For single precision we have

CALL CORSA(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
+ ISAVE, RSAVE)

and for double precision we have

CALL CORSAD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL, INFO,
+ ISAVE, RSAVE)

where

39

IACT is an INTEGER that indicate the action the user has to preform on every return
of the CORSA/AD routines. Prior to the first call to CORSA/AD, IACT should be
set to 0. Possible values are as follows:

-1 An error occurred, and the user must terminate the computation. The rea-
son for the error is in INFO(1). See section C.1.3 for more information.

1 If ICNTL(4)=0 (the default value), convergence has been achieved, and the
user should terminate the computation. If ICNTL(4) is nonzero, the
user may test for convergence. If convergence has not been achieved,
CORSA/AD should be called again, without changes to its arguments.

2 The user must preform the matrix-vector product

y = Az

and recall CORSA/AD. The vectors y and z are in columns LOCY and LOCZ

of array W respectively. The user should not change z.

3 The user must preform the preconditioning operation

y = Mz

where M is the preconditioner. The vectors y and z are in columns
LOCY and LOCZ of array W respectively. The user should not change z.
Preconditioning is only used when ICNTL(3) is nonzero.

N is an INTEGER variable that must be set by the user to the order of the matrix
A. The variable must be preserved between calls to CORSA/AD. This argument
is not altered by the routine.

W is a REAL (DOUBLE PRECISION in the D version) two-dimensional array with
dimensions (LWD, 13). Prior to the first call to CORSA/AD, the first column
must hold the right hand side b. IF ICNTL(5) is nonzero, the second column
must contain the initial estimate of the solution x. On exit, the first column
holds the residual r = b − Ax̂ and the second column holds the estimate of
the solution x. Other than the vector contained in the LOCYth column of W, W
should remain unchanged between calls to CORSA/AD.

LWD is an INTEGER variable that must be set by the user to the first dimension of
W. This argument is not altered by the routine. It should be greater than N.

LOCY, LOCZ are INTEGER variables that need not be set by the user. On return with IACT

> 1, they indicate which columns of W should be used to preform the operations
as specified under IACT (see above). These arguments must not be altered by
the user between calls to CORSA/AD.

RESID is a REAL (DOUBLE PRECISION in the D version) variable that need not be set
by the user. On return with IACT=1, it contains the 2-norm of the residual
vector ‖b−Ax̂‖2, where x̂ is the current estimate of the solution.

ICNTL is an INTEGER array of length 8 that has to be set by the user. The default
values are set by a call to CORSA/AD as described in section C.1.1.1. Details
of the control parameters are given in section C.1.2. This argument is not
altered by the routine.

40

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that does
not have to be set by the user. that has to be set by the user. The default
values are set by a call to CORSA/AD as described in section C.1.1.1. Details
of the control parameters are given in section C.1.2. This argument is not
altered by the routine.

INFO is an INTEGER array of length 4 that need not be set by the user. It is used
to store information about the subroutine. On return of CORSA/AD, INFO(1)
tells if the subroutine was successful (value 0) or if an error occurred (non-zero
values). More information about this is in section C.1.3. INFO(2) holds the
amount of iterations preformed by the subroutine. INFO(3) and INFO(4) are
unused.

ISAVE is an INTEGER array of length 17 that must not be altered by the user.
RSAVE is a REAL (DOUBLE PRECISION in the D version) array of length 9 that must

not be altered by the user.

C.1.2 Control parameters

ICNTL and CNTL contain the control parameters of CORSA/AD. ICNTL controls the actions
CORSA/AD takes, and CNTL controls the tolerances used by CORSA/AD. The default values are
set by CORSI/ID.

ICNTL(1) is the stream number for error messages and has default value 6. Printing of
error messages is suppressed if ICNTL(1) ≤ 0.

ICNTL(2) is the stream number for warning messages and has default value 6. Printing
of warning messages is suppressed if ICNTL(1) ≤ 0.

ICNTL(3) controls whether the user wishes to use preconditioning. It has default value
0 and in this case no preconditioning is used. If ICNTL(3) is non-zero, the
user will be expected to preform preconditioning when IACT = 3.

ICNTL(4) controls whether the convergence test offered by CORSA/AD is used. It
has default value 0 and in this case the computed solution x̂ is ac-
cepted if the 2-norm of the residual (‖b − Ax̂‖2) is less or equal to
max(CNTL(1)*(CNTL(2)+‖x‖2*CNTL(3)),CNTL(4)), If the user does not
want to use this test, ICNTL(4) should be non-zero. In this case, the user
will be expected to test for convergence when IACT = 1.

ICNTL(5) controls whether the user wishes to supply an initial estimate of the solution
x. It has default value 0 and in this case the initial estimate is set to the zero
vector. If the user wishes to supply an initial estimate, ICNTL(5) should be
non-zero. In this case, the initial estimate should be put in the second column
of W prior to the first call to CORSA/AD.

ICNTL(6) determines the maximum number of iterations allowed. It has default value
-1, and in this case the maximum number of iterations is equal to the order
of the matrix A (N). If the user wishes to use a different maximum number
of iterations, ICNTL(6) should be set to this number. In case of a negative
number, the default will be used.

ICNTL(7),
ICNTL(8)

have default value 0 and are unused by CORSA/AD

CNTL(1) is one of the two convergence tolerances, as described under ICNTL(4).
CNTL(1) has default value

√
u, where u is the relative machine precision.

If ICNTL(4) is non-zero, this will not be used. See section C.2 for more infor-
mation.

41

CNTL(2) is the first variable used in the normwise backward error, and has a default
value ‖b‖2. The default value is set in CORSA/AD, not in CORSI/ID. See section
C.2 for more information.

CNTL(3) is the second variable used in the normwise backward error, and has a default
value of zero. If this is left zero, the norm of x will also not not be calculated.
See section C.2 for more information.

CNTL(4) is one of the two convergence tolerances, as described under ICNTL(4).
CNTL(2) has default value 0. If ICNTL(4) is non-zero, this will not be used.
See section C.2 for more information.

CNTL(5) is the breakdown tolerance. It has default value u, where u is the relative
machine precision. If ρ is close enough to zero according to this tolerance, the
method has broken down. See section C.2 for more information.

C.1.3 Error values

Upon the return of CORSA/AD, negative values for INFO(1) indicate an error and positive values
indicate a warning. If everything went well, the value should be zero. Error messages are written
to ICNTL(1) and warnings to ICNTL(2). Possible non-zero values for INFO(1) are:

-1 The value of N is out of range (< 1). There is an immediate return without any input
parameters changed.

-2 The value of LWD is out of range (< N). There is an immediate return without any input
parameters changed.

-3 The algorithm has broken down.

-4 The maximum amount of iterations determined by ICNTL(6) if it is not the default or N if
ICNTL(6) is the default has been exceeded.

1 The convergence tolerance specified by the user in CNTL(1) lies outside the interval (u, 1.0)
where u is the machine precision. CNTL(1) is reset to the default value

√
u.

C.1.4 General information

Files needed to run the algorithm:

cors.f, ddeps.f

Routines called:

BLAS SNRM2/DNRM2, SCOPY/DCOPY, SAXPY/DAXPY, SSCAL/DSCAL, SDOT/DDOT

HSL FD15A/AD

Restriction:

LWD ≥ N ≥ 1

C.2 Implementation

42

1 SUBROUTINE CORSID(ICNTL,CNTL,ISAVE,RSAVE)
2 C Variables passed to the subroutine
3 IMPLICIT NONE
4 DOUBLE PRECISION CNTL(5)
5 INTEGER ICNTL(8)
6 INTEGER ISAVE(19)
7 DOUBLE PRECISION RSAVE(9)
8 C Local variables
9 INTEGER I

10 DOUBLE PRECISION ZERO
11 PARAMETER (ZERO=0.0D+0)
12 DOUBLE PRECISION FD15AD
13 EXTERNAL FD15AD
14 INTRINSIC SQRT
15 ICNTL(1) = 6
16 ICNTL(2) = 6
17 ICNTL(3) = 0
18 ICNTL(4) = 0
19 ICNTL(5) = 0
20 ICNTL(6) = -1
21 ICNTL(7) = 0
22 ICNTL(8) = 0
23 CNTL(1) = SQRT(FD15AD(’E’))
24 CNTL(2) = ZERO
25 CNTL(3) = ZERO
26 CNTL(4) = ZERO
27 CNTL(5) = FD15AD(’E’)
28 DO 10 I = 1, 19
29 ISAVE(I) = 0
30 10 CONTINUE
31 DO 20 I = 1, 9
32 RSAVE(I) = 0.0
33 20 CONTINUE
34 RETURN
35 END
36 SUBROUTINE CORSAD(IACT,N,W,LDW,LOCY,LOCZ,RESID,ICNTL,CNTL,INFO,
37 + ISAVE,RSAVE)
38 C Variables passed to the subroutine
39 IMPLICIT NONE
40 DOUBLE PRECISION RESID
41 INTEGER IACT,LDW,LOCY,LOCZ,N
42 DOUBLE PRECISION CNTL(5),W(LDW,13)
43 INTEGER ICNTL(8),INFO(4)
44 INTEGER ISAVE(19)
45 DOUBLE PRECISION RSAVE(9)
46 C Local variables
47 DOUBLE PRECISION TWO, ONE, ZERO
48 PARAMETER (TWO=2.0D+0,ONE=1.0D+0,ZERO=0.0D+0)
49 DOUBLE PRECISION BNRM2, RNRM2, RTNRM2, ALPHA, BETA, RHO, RHO1,
50 + XNRM2
51 INTEGER B, R, X, RPRM, ZR, ZRHAT, E, ZE, D, Q, ZQ, ZQHAT, H, F, G,
52 + ITMAX, IPOS, I
53 DOUBLE PRECISION DDOT, DNRM2, FD15AD
54 EXTERNAL DDOT, DNRM2, FD15AD
55 INTRINSIC ABS,MAX,SQRT
56 EXTERNAL DAXPY,DCOPY,DSCAL
57 C Code
58 C Load all the local variables as they were on the last run
59 IPOS = ISAVE(1)
60 ITMAX = ISAVE(2)

61 B = ISAVE(3)
62 X = ISAVE(4)
63 R = ISAVE(5)
64 RPRM = ISAVE(6)
65 ZR = ISAVE(7)
66 ZRHAT = ISAVE(8)
67 E = ISAVE(9)
68 ZE = ISAVE(10)
69 D = ISAVE(11)
70 Q = ISAVE(12)
71 ZQ = ISAVE(13)
72 ZQHAT = ISAVE(14)
73 H = ISAVE(15)
74 F = ISAVE(16)
75 G = ISAVE(17)
76 BNRM2 = RSAVE(1)
77 ALPHA = RSAVE(2)
78 BETA = RSAVE(3)
79 RHO = RSAVE(4)
80 RHO1 = RSAVE(5)
81 XNRM2 = RSAVE(6)
82 IF (IACT.EQ.0) GO TO 10
83 IF (IACT.LT.0) GO TO 1000
84 IF (IACT.EQ.1 .AND. ICNTL(4).EQ.0) GO TO 1000
85 IF (IACT.EQ.1 .AND. BNRM2.EQ.ZERO) GO TO 1000
86 IF (IPOS.EQ.1) GO TO 40
87 IF (IPOS.EQ.2) GO TO 60
88 IF (IPOS.EQ.3) GO TO 70
89 IF (IPOS.EQ.4) GO TO 80
90 IF (IPOS.EQ.5) GO TO 90
91 IF (IPOS.EQ.6) GO TO 100
92 IF (IPOS.EQ.7) GO TO 110
93 IF (IPOS.EQ.8) GO TO 120
94 10 CONTINUE
95 INFO(1) = 0
96 C No negative order possible
97 IF (N.LE.0) THEN
98 INFO(1) = -1
99 C W can’t be larger than the order

100 ELSE IF (LDW.LT.MAX(1,N)) THEN
101 INFO(1) = -2
102 END IF
103 C Something went wrong, return an error
104 IF (INFO(1).LT.0) THEN
105 IACT = -1
106 IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
107 GO TO 1000
108 END IF
109 B = 1
110 X = 2
111 R = 1
112 RPRM = 3
113 ZR = 4
114 ZRHAT = 5
115 E = 6
116 ZE = 7
117 D = 8
118 Q = 9
119 ZQ = 5
120 ZQHAT = 10

43

121 H = 11
122 F = 12
123 G = 13
124 INFO(2) = 0
125 C Max amount of iterations is N
126 ITMAX = N
127 C or ICNTL(6) if specified
128 IF (ICNTL(6).GT.0) ITMAX = ICNTL(6)
129 C If the 2 norm of b is zero, that means that b is zero, so the solution
130 C is zero, the residual is zero, everything is zero
131 BNRM2 = DNRM2(N,W(1,B),1)
132 IF (BNRM2.EQ.ZERO) THEN
133 IACT = 1
134 DO 20 I = 1,N
135 W(I,X) = ZERO
136 W(I,B) = ZERO
137 20 CONTINUE
138 RESID = ZERO
139 GO TO 1000
140 END IF
141 C In this case, the user may test for convergence when IACT = 1 is
142 C returned.
143 IF (ICNTL(4).EQ.0) THEN
144 IF (CNTL(1).LT.FD15AD(’E’) .OR. CNTL(1).GT.ONE) THEN
145 INFO(1) = 1
146 IF (ICNTL(2).GT.0) THEN
147 WRITE (ICNTL(2),FMT=9010) INFO(1)
148 WRITE (ICNTL(2),FMT=9020)
149 END IF
150 CNTL(1) = SQRT(FD15AD(’E’))
151 END IF
152 IF (CNTL(2).EQ.ZERO) THEN
153 CNTL(2) = BNRM2
154 END IF
155 END IF
156 C Initial estimate for x is the 0 vector
157 IF (ICNTL(5).EQ.0) THEN
158 DO 30 I = 1,N
159 W(I,X) = ZERO
160 30 CONTINUE
161 GO TO 50
162 ELSE
163 C or if ICNTL(5) is not 0, you need to have specified W(1,X)
164 IF (DNRM2(N,W(1,X),1).EQ.ZERO) GO TO 50
165 IPOS = 1
166 IACT = 2
167 LOCY = Q
168 LOCZ = X
169 GO TO 1000
170 END IF
171 C We have x and b, so r = -q (is Ax) + r (is b), so b-Ax
172 C We don’t need b any more
173 40 CALL DAXPY(N,-ONE,W(1,Q),1,W(1,R),1)
174 50 CONTINUE
175 C Set r prime as Ar
176 IPOS = 2
177 IACT = 2
178 LOCY = RPRM
179 LOCZ = R
180 GO TO 1000

181 60 CONTINUE
182 INFO(2) = INFO(2) + 1
183 C Check maximum number of iterations has not been exceeded.
184 IF (INFO(2).GT.ITMAX) THEN
185 INFO(1) = -4
186 IACT = -1
187 IF (ICNTL(1).GT.0) THEN
188 WRITE (ICNTL(1),FMT=9000) INFO(1)
189 WRITE (ICNTL(1),FMT=9030) ITMAX
190 END IF
191 GO TO 1000
192 END IF
193 C Perform the preconditioning operation
194 IF (ICNTL(3).NE.0) THEN
195 IPOS = 3
196 IACT = 3
197 LOCY = ZR
198 LOCZ = R
199 GO TO 1000
200 ELSE
201 CALL DCOPY(N,W(1,R),1,W(1,ZR),1)
202 END IF
203 70 CONTINUE
204 C Calculate zr hat
205 IPOS = 4
206 IACT = 2
207 LOCY = ZRHAT
208 LOCZ = ZR
209 GO TO 1000
210 80 CONTINUE
211 C See if the algorithm broke down. Otherwise, we can use rho in the
212 C remaining part of the algorithm
213 RHO = DDOT(N, W(1,RPRM), 1, W(1,ZRHAT), 1)
214 IF (ABS(RHO).LT.CNTL(5)*N) THEN
215 RNRM2 = DNRM2(N,W(1,R),1)
216 RTNRM2 = DNRM2(N,W(1,RPRM),1)
217 IF (ABS(RHO).LT.CNTL(5)*RNRM2*RTNRM2) THEN
218 INFO(1) = -3
219 IACT = -1
220 IF (ICNTL(1).GT.0) WRITE (ICNTL(1),FMT=9000) INFO(1)
221 GO TO 1000
222 END IF
223 END IF
224 IF (INFO(2).GT.1) THEN
225 BETA = RHO/RHO1
226 C e = r + beta*h
227 CALL DCOPY(N,W(1,R),1,W(1,E),1)
228 CALL DAXPY(N,BETA,W(1,H),1,W(1,E),1)
229 C ze = zr + beta*f
230 CALL DCOPY(N,W(1,ZR),1,W(1,ZE),1)
231 CALL DAXPY(N,BETA,W(1,F),1,W(1,ZE),1)
232 C d = zrhat + beta*g
233 CALL DCOPY(N,W(1,ZRHAT),1,W(1,D),1)
234 CALL DAXPY(N,BETA,W(1,G),1,W(1,D),1)
235 C q = d+beta*(g+beta*q)
236 CALL DSCAL(N,BETA,W(1,Q),1)
237 CALL DAXPY(N,ONE,W(1,G),1,W(1,Q),1)
238 CALL DSCAL(N,BETA,W(1,Q),1)
239 CALL DAXPY(N,ONE,W(1,D),1,W(1,Q),1)
240 ELSE

44

241 CALL DCOPY(N,W(1,R),1,W(1,E),1)
242 CALL DCOPY(N,W(1,ZRHAT),1,W(1,D),1)
243 CALL DCOPY(N,W(1,ZRHAT),1,W(1,Q),1)
244 C Calculate ze on the first run by a preconditioning operation
245 IF (ICNTL(3).NE.0) THEN
246 IPOS = 5
247 IACT = 3
248 LOCY = ZE
249 LOCZ = E
250 GO TO 1000
251 ELSE
252 CALL DCOPY(N,W(1,E),1,W(1,ZE),1)
253 END IF
254 END IF
255 90 CONTINUE
256 C Perform preconditioning
257 IF (ICNTL(3).NE.0) THEN
258 IPOS = 6
259 IACT = 3
260 LOCY = ZQ
261 LOCZ = Q
262 GO TO 1000
263 ELSE
264 CALL DCOPY(N,W(1,Q),1,W(1,ZQ),1)
265 END IF
266 100 CONTINUE
267 IPOS = 7
268 IACT = 2
269 LOCY = ZQHAT
270 LOCZ = ZQ
271 GO TO 1000
272 110 CONTINUE
273 ALPHA = RHO/DDOT(N, W(1, RPRM), 1, W(1,ZQHAT), 1)
274 C h=e-alpha*q
275 CALL DCOPY(N,W(1,E),1,W(1,H),1)
276 CALL DAXPY(N,-ALPHA,W(1,Q),1,W(1,E),1)
277 C f=ze-alpha*zq
278 CALL DSCAL(N,-ALPHA,W(1,ZQ),1)
279 CALL DCOPY(N,W(1,ZQ),1,W(1,F),1)
280 CALL DAXPY(N,ONE,W(1,ZE),1,W(1,F),1)
281 C g=d-alpha*zqhat
282 CALL DSCAL(N,-ALPHA,W(1,ZQHAT),1)
283 CALL DCOPY(N,W(1,ZQHAT),1,W(1,G),1)
284 CALL DAXPY(N,ONE,W(1,D),1,W(1,G),1)
285 C x=x+alpha*(2*ze-alpha*zq), -alpha*zq is already stored in zq
286 CALL DAXPY(N,TWO,W(1,ZE),1,W(1,ZQ),1)
287 CALL DAXPY(N,ALPHA,W(1,ZQ),1,W(1,X),1)
288 C r=r-alpha*(2*d-alpha*zqhat), -alpha*zqhat is already stored in zqhat
289 CALL DAXPY(N,TWO,W(1,D),1,W(1,ZQHAT),1)
290 CALL DAXPY(N,-ALPHA,W(1,ZQHAT),1,W(1,R),1)
291 RESID = DNRM2(N,W(1,R),1)
292 IPOS = 8
293 C The user can check the error if ICNTL(4) is non-zero at IACT.EQ.1
294 IF (ICNTL(4).NE.0) THEN
295 IACT = 1
296 GO TO 1000
297 ELSE
298 IF (CNTL(3).NE.ZERO) THEN
299 XNRM2 = DNRM2(N,W(1,X),1)
300 END IF

301 IF (RESID.LE.MAX(CNTL(1)*(CNTL(2)+XNRM2*CNTL(3)),CNTL(4))) THEN
302 IACT = 1
303 GO TO 1000
304 END IF
305 END IF
306 120 CONTINUE
307 RHO1 = RHO
308 GO TO 60
309 1000 CONTINUE
310 C Save all the local variables to use on the next run
311 ISAVE(1) = IPOS
312 ISAVE(2) = ITMAX
313 ISAVE(3) = B
314 ISAVE(4) = X
315 ISAVE(5) = R
316 ISAVE(6) = RPRM
317 ISAVE(7) = ZR
318 ISAVE(8) = ZRHAT
319 ISAVE(9) = E
320 ISAVE(10) = ZE
321 ISAVE(11) = D
322 ISAVE(12) = Q
323 ISAVE(13) = ZQ
324 ISAVE(14) = ZQHAT
325 ISAVE(15) = H
326 ISAVE(16) = F
327 ISAVE(17) = G
328 RSAVE(1) = BNRM2
329 RSAVE(2) = ALPHA
330 RSAVE(3) = BETA
331 RSAVE(4) = RHO
332 RSAVE(5) = RHO1
333 RSAVE(6) = XNRM2
334 RETURN
335 9000 FORMAT (/’ Error message from CORS. INFO(1) = ’,I4)
336 9010 FORMAT (/’ Warning message from CORS. INFO(1) = ’,I4)
337 9020 FORMAT (’ Convergence tolerance out of range.’)
338 9030 FORMAT (’ Number of iterations required exceeds the maximum of ’,
339 + I8,/’ allowed by ICNTL(6)’)
340 END

45

D Implementation of the testing application

46

1 PROGRAM TEST
2

3 C !!!!!!!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!!!!!!!!!
4 C IF ILUPACK RETURNS AN ERROR, THERE WILL APPEAR A
5 C *** glibc detected *** double free or corruption
6 C ERROR. TO PREVENT THIS, RUN THE PROGRAM WITH
7 C MALLOC_CHECK_=0
8

9

10 C Solve the linear system A x = b
11

12 C .. Parameters ..
13 IMPLICIT NONE
14 INTEGER N, LDW
15 C ..
16 C .. Local Scalars ..
17 DOUBLE PRECISION RESID
18 INTEGER I, IACT, ROWS, COLS, NNZ, RNNZ
19 INTEGER LOCY, LOCZ
20 CHARACTER REP*10
21 CHARACTER FIELD*7
22 CHARACTER SYMM*19
23 DOUBLE PRECISION BNRM2
24 C ..
25 C .. Local Arrays ..
26 INTEGER LOCY2(2), LOCZ2(2)
27 DOUBLE PRECISION CNTL(5)
28 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: W
29 INTEGER ICNTL(8), INFO(4)
30 INTEGER ISAVE(19)
31 DOUBLE PRECISION RSAVE(9)
32 COMPLEX, DIMENSION(:), ALLOCATABLE :: CVAL
33 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RVAL
34 INTEGER, DIMENSION(:), ALLOCATABLE :: IVAL
35 INTEGER, DIMENSION(:), ALLOCATABLE :: INDX
36 INTEGER, DIMENSION(:), ALLOCATABLE :: JNDX
37 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RVALO
38 INTEGER, DIMENSION(:), ALLOCATABLE :: INDXO
39 INTEGER, DIMENSION(:), ALLOCATABLE :: JNDXO
40 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: SOLUTION
41 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: RHS
42 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: TEMP
43 C ..
44 C .. Local Variables needed for ILUPACK ..
45 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: ILUA
46 INTEGER, DIMENSION(:), ALLOCATABLE :: ILUIA
47 INTEGER, DIMENSION(:), ALLOCATABLE :: ILUJA
48 INTEGER, DIMENSION(:), ALLOCATABLE :: ILUIND
49 C ..
50 C .. ILUPACK external parameters
51 INTEGER ILUMATCHING, ILUMAXIT, ILULFIL, ILULFILS, ILUNRESTART,
52 + ILUIERR, ILUMIXEDPRECISION
53 CHARACTER ILUORDERING*20
54 DOUBLE PRECISION ILUDROPTOL, ILUDROPTOLS, ILUCONDEST, ILURESTOL,
55 + ILUELBOW
56 INTEGER*8 ILUPARAM, ILUPREC
57 INTEGER DGNLAMGFACTOR, DGNLAMGNNZ
58 EXTERNAL DGNLAMGINIT, DGNLAMGSOL, DGNLAMGFACTOR, DGNLAMGTSOL,
59 + DGNLAMGNNZ, DGNLAMGDELETE
60 C ..

61 C .. Local Variables needed for BICGSTABl ..
62 INTEGER L, LDRW, MXMV, LDWB
63 DOUBLE PRECISION TOL
64 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: WORK
65 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: RWORK
66 INTEGER, DIMENSION(:), ALLOCATABLE :: IWORK
67 INTEGER, DIMENSION(:,:), ALLOCATABLE :: IWORK2, IWORK3
68 EXTERNAL BISTBL, PRECSOLVE, MV
69 C ..
70 C .. Variables for GMRES
71 INTEGER M
72 LOGICAL LSAVE(4)
73 DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: H
74 INTEGER LDH
75 C ..
76 C .. Variables for QMR
77 INTEGER MAXPQ, MAXVW, MVEC
78 C ..
79 C .. Local Variables needed for testing ..
80 REAL TARRAY(2)
81 CHARACTER MNAME*50, TOL_STRING*5
82 CHARACTER MFNAME*70
83 CHARACTER FNAME*70
84 INTEGER MVOPP, MAXMVP
85 INTEGER FSTAT
86 INTEGER NPRT, PREC, CALLS, RUNS
87 PARAMETER (NPRT=20)
88 DOUBLE PRECISION PREC_TOL, PREC_UPPER_TOL
89 C ..
90 C .. External Subroutines ..
91 EXTERNAL MMREAD, MMINFO
92 EXTERNAL CORSAD, CORSID
93 EXTERNAL BICORAD, BICORID
94 EXTERNAL MI26AD, MI26ID
95 EXTERNAL MI25AD, MI25ID
96 EXTERNAL MI24AD, MI24ID
97 EXTERNAL MI23AD, MI23ID
98 EXTERNAL AMUX, ATMUX
99 DOUBLE PRECISION FD15AD, DNRM2

100 EXTERNAL DCOPY, DNRM2, FD15AD
101 EXTERNAL CLEARALL
102 DOUBLE PRECISION ETA
103

104 C Some parameters
105 PARAMETER (ETA = 1.0D-10)
106 PARAMETER (MAXMVP = 20000)
107

108 C Open the list with matrices
109 OPEN(11, FILE=’matrices.txt’, STATUS=’OLD’)
110 5 CONTINUE
111 C ..
112 C .. Load our matrix and convert to the sparse matrix format ..
113 READ(11, *, END=2000) MNAME
114 WRITE(6, 4010) TRIM(MNAME)
115 MFNAME = ’/home/sven/matrices/’ // TRIM(MNAME) // ’.mtx’
116 OPEN(1, FILE=MFNAME, STATUS=’OLD’)
117 WRITE(6, 4020)
118 CALL MMINFO(1, REP, FIELD, SYMM, ROWS, COLS, NNZ)
119 IF (ROWS.NE.COLS) THEN
120 WRITE(6,9990)

47

121 GO TO 5
122 END IF
123

124 N = ROWS
125 LDW = N
126

127 ALLOCATE(TEMP(N))
128 ALLOCATE(RVAL(NNZ))
129 ALLOCATE(CVAL(NNZ))
130 ALLOCATE(IVAL(NNZ))
131 ALLOCATE(INDX(NNZ))
132 ALLOCATE(JNDX(NNZ))
133 ALLOCATE(RVALO(NNZ))
134 ALLOCATE(JNDXO(NNZ))
135 ALLOCATE(INDXO(N+1))
136

137 CALL MMREAD(1, REP, FIELD, SYMM, ROWS, COLS, NNZ, NNZ,
138 + INDX, JNDX, IVAL, RVAL, CVAL)
139 CLOSE(1)
140 C .. column indices and row pointers
141 WRITE(6, 4030)
142 CALL COOCSR(ROWS, NNZ, RVAL, INDX, JNDX, RVALO, JNDXO, INDXO)
143

144 DEALLOCATE(RVAL)
145 DEALLOCATE(CVAL)
146 DEALLOCATE(IVAL)
147 DEALLOCATE(INDX)
148 DEALLOCATE(JNDX)
149

150 C ..
151 C Preconditioning is required
152 PREC = 0
153 ICNTL(3) = PREC
154 C Set right hand side, b
155 WRITE(6, 4035)
156

157 ALLOCATE(SOLUTION(N))
158 ALLOCATE(RHS(N))
159

160 OPEN(13, FILE=’/home/sven/matrices/’ // TRIM(MNAME)
161 + // ’_rhs1.mtx’, STATUS=’OLD’, IOSTAT=FSTAT)
162 IF (FSTAT.NE.0) THEN
163 OPEN(13, FILE=’/home/sven/matrices/’ // TRIM(MNAME)
164 + // ’_b.mtx’, STATUS=’OLD’, IOSTAT=FSTAT)
165 IF (FSTAT.NE.0) THEN
166 WRITE(6, 4036)
167 SOLUTION = 1.0D+0
168 CALL AMUX(N, SOLUTION, RHS, RVALO, JNDXO, INDXO)
169 ELSE
170 CALL MMREAD(13, REP, FIELD, SYMM, ROWS, COLS, RNNZ, N,
171 + SOLUTION, SOLUTION, SOLUTION, RHS, SOLUTION)
172 END IF
173 ELSE
174 CALL MMREAD(13, REP, FIELD, SYMM, ROWS, COLS, RNNZ, N,
175 + SOLUTION, SOLUTION, SOLUTION, RHS, SOLUTION)
176 END IF
177 CLOSE(13)
178 BNRM2 = DNRM2(N, RHS, 1)
179 C Preconditioner switch
180 PREC_TOL = 0.01

181 PREC_UPPER_TOL = 5.0
182 7 CONTINUE
183 RUNS = 0
184 PREC_TOL = PREC_TOL * 10.0
185 WRITE(TOL_STRING,’(F5.2)’) PREC_TOL
186 TOL_STRING = REPEAT(’0’,5 - LEN_TRIM(ADJUSTL(TOL_STRING)))
187 + // ADJUSTL(TOL_STRING)
188 FNAME = ’output/’ // TRIM(MNAME) // ’_’ // TOL_STRING // ’.txt’
189 OPEN(10, FILE=FNAME, STATUS=’NEW’, IOSTAT=FSTAT)
190 IF (FSTAT.NE.0) THEN
191 WRITE(6,FMT=4037)
192 RUNS = 100
193 GO TO 1010
194 END IF
195 WRITE(10, FMT=3010) TRIM(MNAME), N, NNZ
196

197 ALLOCATE(W(N,13))
198

199 C Initialize data for the preconditioner
200 C
201 WRITE(6, FMT=4040)
202

203 ALLOCATE(ILUJA(NNZ))
204 ALLOCATE(ILUIA(N+1))
205 ALLOCATE(ILUA(NNZ))
206 ALLOCATE(ILUIND(N))
207

208 ILUJA = JNDXO
209 ILUIA = INDXO
210 CALL DCOPY(NNZ, RVALO, 1, ILUA, 1)
211

212 CALL DGNLAMGINIT(N, ILUIA, ILUJA, ILUA, ILUMATCHING,
213 + ILUORDERING, ILUDROPTOL, ILUDROPTOLS,
214 + ILUCONDEST, ILURESTOL, ILUMAXIT, ILUELBOW,
215 + ILULFIL, ILULFILS, ILUNRESTART,
216 + ILUMIXEDPRECISION, ILUIND)
217

218 c threshold for ILU, default: 1e-2
219 ILUDROPTOL=PREC_TOL
220 c
221 c threshold for the approximate Schur complements, default: 0.1*droptol
222 ILUDROPTOLS=0.1*ILUDROPTOL
223

224 ILUMIXEDPRECISION = 0
225 CALL CPU_TIME(TARRAY(1))
226

227 ILUIERR=DGNLAMGFACTOR(ILUPARAM, ILUPREC, N, ILUIA, ILUJA,
228 + ILUA, ILUMATCHING, ILUORDERING, ILUDROPTOL, ILUDROPTOLS,
229 + ILUCONDEST, ILURESTOL, ILUMAXIT, ILUELBOW, ILULFIL,
230 + ILULFILS, ILUNRESTART, ILUMIXEDPRECISION, ILUIND)
231

232 CALL CPU_TIME(TARRAY(2))
233

234 IF (ILUIERR.EQ.-1) THEN
235 WRITE (6,’(A)’) ’Error. input matrix may be wrong.’
236 ELSEIF (ILUIERR.EQ.-2) THEN
237 WRITE (6,’(A)’)
238 + ’matrix L overflow, increase elbow and retry’
239 ELSEIF (ILUIERR.EQ.-3) THEN
240 WRITE (6,’(A)’)

48

241 + ’matrix U overflow, increase elbow and retry’
242 ELSEIF (ILUIERR.EQ.-4) THEN
243 WRITE (6,’(A)’) ’Illegal value for lfil’
244 ELSEIF (ILUIERR.EQ.-5) THEN
245 WRITE (6,’(A)’) ’zero row encountered’
246 ELSEIF (ILUIERR.EQ.-6) THEN
247 WRITE (6,’(A)’) ’zero column encountered’
248 ELSEIF (ILUIERR.EQ.-7) THEN
249 WRITE (6,’(A)’) ’buffers are too small’
250 ELSEIF (ILUIERR.NE.0) THEN
251 WRITE (6,’(A,I3)’)
252 + ’zero pivot encountered at step number’, ILUIERR
253 ENDIF
254 IF (ILUIERR.NE.0) THEN
255 WRITE(10, FMT=3032) ILUIERR
256 GO TO 1000
257 END IF
258

259 WRITE(10, FMT=3020) TARRAY(2)-TARRAY(1), N,
260 + DGNLAMGNNZ(ILUPARAM, ILUPREC)
261 CALL FLUSH(10)
262 WRITE(6, FMT=4050)
263 CC
264 CCCCCCCCCCCCCCCCCCCCCCC CORS CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
265 CC
266 WRITE(10, FMT=3030) ’CORS’
267

268 CALLS = 0
269 10 CONTINUE
270 CALLS = CALLS + 1
271 RUNS = RUNS + 1
272 C Clear everything
273

274 CALL CORSID(ICNTL, CNTL, ISAVE, RSAVE)
275 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
276 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
277

278 C Perform an iteration of the CORS method
279

280 CALL CPU_TIME(TARRAY(1))
281 20 CONTINUE
282 CALL CORSAD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
283 + INFO, ISAVE, RSAVE)
284

285 IF (MVOPP.GE.MAXMVP) THEN
286 CALL CPU_TIME(TARRAY(2))
287 WRITE (6, FMT=9020) -88
288 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)
289 GO TO 30
290 END IF
291

292 IF (IACT.LT.0) THEN
293 CALL CPU_TIME(TARRAY(2))
294 WRITE (6, FMT=9020) INFO(1)
295 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
296 GO TO 30
297 END IF
298

299 IF (IACT.EQ.2) THEN
300 C Perform the matrix-vector product

301 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
302 CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
303 MVOPP = MVOPP + 1
304 GO TO 20
305 END IF
306

307 IF (IACT.EQ.3) THEN
308 C Perform the preconditioning operation
309 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
310 GO TO 20
311 END IF
312

313 CALL CPU_TIME(TARRAY(2))
314

315 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
316 IF (ISNAN(TEMP(1))) THEN
317 INFO(1) = -99
318 WRITE (6, FMT=9020) INFO(1)
319 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
320 GO TO 30
321 END IF
322

323 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
324

325 C Solution found
326 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
327 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
328

329 IF (CALLS.LE.5) THEN
330 GO TO 10
331 END IF
332

333 30 CONTINUE
334

335 CC
336 CCCCCCCCCCCCCCCCCCCCC BICOR CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
337 CC
338 WRITE(10,3030) ’BiCOR’
339

340 CALLS = 0
341 110 CONTINUE
342 CALLS = CALLS + 1
343 RUNS = RUNS + 1
344 C Clear everything
345

346 CALL BICORID(ICNTL, CNTL, ISAVE, RSAVE)
347 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
348 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
349

350 C Perform an iteration of the BICOR method
351

352 CALL CPU_TIME(TARRAY(1))
353 120 CONTINUE
354 CALL BICORAD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
355 + INFO, ISAVE, RSAVE)
356

357 IF (MVOPP.GE.MAXMVP) THEN
358 CALL CPU_TIME(TARRAY(2))
359 WRITE (6, FMT=9020) -88
360 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)

49

361 GO TO 130
362 END IF
363

364 IF (IACT.LT.0) THEN
365 CALL CPU_TIME(TARRAY(2))
366 WRITE (6, FMT=9020) INFO(1)
367 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
368 GO TO 130
369 END IF
370

371 IF (IACT.EQ.2) THEN
372 C Perform the matrix-vector product
373 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
374 CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
375 MVOPP = MVOPP + 1
376 GO TO 120
377 END IF
378

379 IF (IACT.EQ.3) THEN
380 C Perform the preconditioning operation
381 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
382 GO TO 120
383 END IF
384

385 IF (IACT.EQ.4) THEN
386 C Perform the matrix-vector product
387 CALL ATMUX(N, W(1, LOCZ), TEMP, RVALO, JNDXO, INDXO)
388 CALL DGNLAMGTSOL(ILUPARAM, ILUPREC, TEMP, W(1,LOCY), N)
389 MVOPP = MVOPP + 1
390 GO TO 120
391 END IF
392

393 IF (IACT.EQ.5) THEN
394 C Perform the preconditioning operation
395 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
396 GO TO 120
397 END IF
398

399 CALL CPU_TIME(TARRAY(2))
400

401 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
402 IF (ISNAN(TEMP(1))) THEN
403 INFO(1) = -99
404 WRITE (6, FMT=9020) INFO(1)
405 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
406 GO TO 130
407 END IF
408

409 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
410

411 C Solution found
412 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
413 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
414

415 IF (CALLS.LE.5) THEN
416 GO TO 110
417 END IF
418

419 130 CONTINUE
420

421 CC
422 CCCCCCCCCCCCCCCCCCCCC BICG-STAB CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
423 CC
424 WRITE(10,3030) ’BiCG-stab’
425

426 CALLS = 0
427 210 CONTINUE
428 CALLS = CALLS + 1
429 RUNS = RUNS + 1
430 C Clear everything
431

432 CALL MI26ID(ICNTL, CNTL, ISAVE, RSAVE)
433 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
434 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
435

436 C Perform an iteration of the BICG-STAB method
437

438 CALL CPU_TIME(TARRAY(1))
439 220 CONTINUE
440 CALL MI26AD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
441 + INFO, ISAVE, RSAVE)
442

443 IF (MVOPP.GE.MAXMVP) THEN
444 CALL CPU_TIME(TARRAY(2))
445 WRITE (6, FMT=9020) -88
446 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)
447 GO TO 230
448 END IF
449

450 IF (IACT.LT.0) THEN
451 CALL CPU_TIME(TARRAY(2))
452 WRITE (6, FMT=9020) INFO(1)
453 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
454 GO TO 230
455 END IF
456

457 IF (IACT.EQ.2) THEN
458 C Perform the matrix-vector product
459 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
460 CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
461 MVOPP = MVOPP + 1
462 GO TO 220
463 END IF
464

465 IF (IACT.EQ.3) THEN
466 C Perform the preconditioning operation
467 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
468 GO TO 220
469 END IF
470

471 CALL CPU_TIME(TARRAY(2))
472

473 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
474 IF (ISNAN(TEMP(1))) THEN
475 INFO(1) = -99
476 WRITE (6, FMT=9020) INFO(1)
477 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
478 GO TO 230
479 END IF
480

50

481 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
482

483 C Solution found
484 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
485 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
486

487 IF (CALLS.LE.5) THEN
488 GO TO 210
489 END IF
490

491 230 CONTINUE
492

493 CC
494 CCCCCCCCCCCCCCCCCCCCCccccc BICG CCCCCCCCCCCCCCCCCCCCCCCCCCC
495 CC
496 WRITE(10,3030) ’BiCG’
497

498 CALLS = 0
499 310 CONTINUE
500 CALLS = CALLS + 1
501 RUNS = RUNS + 1
502 C Clear everything
503

504 CALL MI25ID(ICNTL, CNTL, ISAVE, RSAVE)
505 CALL CLEARALL(IACT, N, W, LDW, LOCY2, LOCZ2, RESID, ICNTL, CNTL,
506 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
507

508 C Perform an iteration of the method
509

510 CALL CPU_TIME(TARRAY(1))
511 320 CONTINUE
512 CALL MI25AD(IACT, N, W, LDW, LOCY2, LOCZ2, RESID, ICNTL, CNTL,
513 + INFO, ISAVE, RSAVE)
514

515 IF (MVOPP.GE.MAXMVP) THEN
516 CALL CPU_TIME(TARRAY(2))
517 WRITE (6, FMT=9020) -88
518 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)
519 GO TO 330
520 END IF
521

522 IF (IACT.LT.0) THEN
523 CALL CPU_TIME(TARRAY(2))
524 WRITE (6, FMT=9020) INFO(1)
525 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
526 GO TO 330
527 END IF
528

529 IF (IACT.EQ.2) THEN
530 C Perform the matrix-vector products
531 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ2(1)),
532 + TEMP, N)
533 CALL AMUX(N, TEMP, W(1, LOCY2(1)), RVALO, JNDXO,
534 + INDXO)
535 CALL ATMUX(N, W(1,LOCZ2(2)), TEMP, RVALO, JNDXO,
536 + INDXO)
537 CALL DGNLAMGTSOL(ILUPARAM, ILUPREC, TEMP,
538 + W(1, LOCY2(2)), N)
539 MVOPP = MVOPP + 2
540 GO TO 320

541 END IF
542

543 IF (IACT.EQ.3) THEN
544 C Perform the preconditioning operations
545 CALL DCOPY(N, W(1,LOCZ2(1)), 1, W(1,LOCY2(1)), 1)
546 CALL DCOPY(N, W(1,LOCZ2(2)), 1, W(1,LOCY2(2)), 1)
547 GO TO 320
548 END IF
549

550 CALL CPU_TIME(TARRAY(2))
551

552 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
553 IF (ISNAN(TEMP(1))) THEN
554 INFO(1) = -99
555 WRITE (6, FMT=9020) INFO(1)
556 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
557 GO TO 330
558 END IF
559

560 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
561

562 C Solution found
563 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
564 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
565

566 IF (CALLS.LE.5) THEN
567 GO TO 310
568 END IF
569

570 330 CONTINUE
571

572 CC
573 CCCCCCCCCCCCCCCCCCCCCCCC CGS CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
574 CC
575 WRITE(10,3030) ’CGS’
576

577 CALLS = 0
578 410 CONTINUE
579 CALLS = CALLS + 1
580 RUNS = RUNS + 1
581 C Clear everything
582

583 CALL MI23ID(ICNTL, CNTL, ISAVE, RSAVE)
584 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
585 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
586

587 C Perform an iteration of the BICG-STAB method
588

589 CALL CPU_TIME(TARRAY(1))
590 420 CONTINUE
591 CALL MI23AD(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
592 + INFO, ISAVE, RSAVE)
593

594 IF (MVOPP.GE.MAXMVP) THEN
595 CALL CPU_TIME(TARRAY(2))
596 WRITE (6, FMT=9020) -88
597 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)
598 GO TO 430
599 END IF
600

51

601 IF (IACT.LT.0) THEN
602 CALL CPU_TIME(TARRAY(2))
603 WRITE (6, FMT=9020) INFO(1)
604 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
605 GO TO 430
606 END IF
607

608 IF (IACT.EQ.2) THEN
609 C Perform the matrix-vector product
610 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
611 CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
612 MVOPP = MVOPP + 1
613 GO TO 420
614 END IF
615

616 IF (IACT.EQ.3) THEN
617 C Perform the preconditioning operation
618 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
619 GO TO 420
620 END IF
621

622 CALL CPU_TIME(TARRAY(2))
623

624 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
625 IF (ISNAN(TEMP(1))) THEN
626 INFO(1) = -99
627 WRITE (6, FMT=9020) INFO(1)
628 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
629 GO TO 430
630 END IF
631

632 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
633

634 C Solution found
635 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
636 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
637

638 IF (CALLS.LE.5) THEN
639 GO TO 410
640 END IF
641

642 430 CONTINUE
643

644 CC
645 CCCCCCCCCCCCCCCCCCCCCccccc GMRES CCCCCCCCCCCCCCCCCCCCCCCCCC
646 CC
647 WRITE(10,3030) ’GMRES’
648

649 CALLS = 0
650 M = 100
651 LDH = M+1
652 ALLOCATE(H(LDH,M+2))
653 DEALLOCATE(W)
654 ALLOCATE(W(LDW,M+7))
655 510 CONTINUE
656 CALLS = CALLS + 1
657 RUNS = RUNS + 1
658 C Clear everything
659

660 CALL MI24ID(ICNTL, CNTL, ISAVE, RSAVE, LSAVE)

661 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
662 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
663

664 C Perform an iteration of the method
665

666 CALL CPU_TIME(TARRAY(1))
667 520 CONTINUE
668 CALL MI24AD(IACT, N, M, W, LDW, LOCY, LOCZ, H, LDH, RESID,
669 + ICNTL, CNTL, INFO, ISAVE, RSAVE, LSAVE)
670

671 IF (MVOPP.GE.MAXMVP) THEN
672 CALL CPU_TIME(TARRAY(2))
673 WRITE (6, FMT=9020) -88
674 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, -88)
675 GO TO 530
676 END IF
677

678 IF (IACT.LT.0) THEN
679 CALL CPU_TIME(TARRAY(2))
680 WRITE (6, FMT=9020) INFO(1)
681 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
682 GO TO 530
683 END IF
684

685 IF (IACT.EQ.2) THEN
686 C Perform the matrix-vector products
687 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,LOCZ), TEMP, N)
688 CALL AMUX(N, TEMP, W(1, LOCY), RVALO, JNDXO, INDXO)
689 MVOPP = MVOPP + 1
690 GO TO 520
691 END IF
692

693 IF (IACT.EQ.3) THEN
694 C Perform the preconditioning operations
695 CALL DCOPY(N, W(1,LOCZ), 1, W(1,LOCY), 1)
696 GO TO 520
697 END IF
698

699 CALL CPU_TIME(TARRAY(2))
700

701 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
702 IF (ISNAN(TEMP(1))) THEN
703 INFO(1) = -99
704 WRITE (6, FMT=9020) INFO(1)
705 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
706 GO TO 530
707 END IF
708

709 CALL SAVERESULTS(TARRAY, INFO(2), MVOPP, INFO(1))
710

711 C Solution found
712 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
713 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
714

715 IF (CALLS.LE.5) THEN
716 GO TO 510
717 END IF
718

719 530 CONTINUE
720

52

721 DEALLOCATE(H)
722

723 CC
724 CCCCCCCCCCCCCCCCCCCCCccc BICGSTABl CCCCCCCCCCCCCCCCCCCCCCCCCC
725 CC
726 L = 1
727 600 CONTINUE
728 L = L + 1
729 WRITE(10,3031) L
730 CALLS = 0
731 ALLOCATE(WORK(N, 3+2*(L+1)))
732 LDRW = (L+1)*(3+2*(L+1))
733 LDWB = N*(3+2*(L+1))
734 ALLOCATE(RWORK(L+1, 3+2*(L+1)))
735 ALLOCATE(IWORK(L+1))
736 610 CONTINUE
737 CALLS = CALLS + 1
738 RUNS = RUNS + 1
739

740 MXMV = MIN(2 * N, MAXMVP)
741 TOL = ETA
742 C Clear everything
743 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
744 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
745

746 C Perform an iteration of the method
747

748 CALL CPU_TIME(TARRAY(1))
749 CALL BISTBL(L, N, W(1,2), W(1,1), MV, PRECSOLVE, TOL,
750 + MXMV, WORK, LDWB, RWORK, LDRW, IWORK, INFO, NNZ,
751 + RVALO, JNDXO, INDXO, ILUPARAM, ILUPREC, TEMP, BNRM2)
752

753 IF (INFO(1).NE.0) THEN
754 CALL CPU_TIME(TARRAY(2))
755 WRITE (6, FMT=9020) INFO(1)
756 CALL SAVERESULTS(TARRAY, L * INFO(2), MXMV, INFO(1))
757 GO TO 630
758 END IF
759

760 CALL CPU_TIME(TARRAY(2))
761

762 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,2), TEMP, N)
763 IF (ISNAN(TEMP(1))) THEN
764 INFO(1) = -99
765 WRITE (6, FMT=9020) INFO(1)
766 CALL SAVERESULTS(TARRAY, L * INFO(2), MXMV, INFO(1))
767 GO TO 630
768 END IF
769

770 CALL SAVERESULTS(TARRAY, L * INFO(2), MXMV, INFO(1))
771

772 C Solution found
773 WRITE (6, FMT=9000) INFO(2), (TEMP(I), I=1, NPRT)
774 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
775

776 IF (CALLS.LE.5) THEN
777 GO TO 610
778 END IF
779

780 630 CONTINUE

781

782 DEALLOCATE(WORK)
783 DEALLOCATE(RWORK)
784 DEALLOCATE(IWORK)
785

786 IF (L.LT.3) THEN
787 GO TO 600
788 END IF
789

790 CC
791 CCCCCCCCCCCCCCCCCCCCCccccc QMR CCCCCCCCCCCCCCCCCCCCCCCCCC
792 CC
793 WRITE(10,3030) ’QMR’
794

795 CALLS = 0
796 MAXVW = 1
797 MAXPQ = 1
798 MVEC = MAXPQ + MAXVW
799 M = MAXPQ + MAXVW + 2
800 L = N
801

802 ALLOCATE(WORK(M, 8*M+18))
803 ALLOCATE(IWORK2(6, L+2))
804 ALLOCATE(IWORK3(M, 13))
805 DEALLOCATE(W)
806 ALLOCATE(W(LDW, 5*MVEC+3))
807

808 710 CONTINUE
809 CALLS = CALLS + 1
810 RUNS = RUNS + 1
811 C Clear everything
812 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
813 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
814

815 CALL DCOPY(N, RHS, 1, W(1,2), 1)
816 RESID = 1.0
817 TOL = ETA
818 MAXVW = 1
819 MAXPQ = 1
820 MVEC = MAXPQ + MAXVW
821 M = MAXPQ + MAXVW + 2
822 L = N
823

824 C Perform an iteration of the method
825

826 CALL CPU_TIME(TARRAY(1))
827 720 CONTINUE
828 CALL DUCPL(LDW, N, L, MAXPQ, MAXVW, M, MVEC, RESID, WORK, IWORK2,
829 + IWORK3, W, TOL, INFO)
830

831 IF (MVOPP.GE.MAXMVP) THEN
832 CALL CPU_TIME(TARRAY(2))
833 WRITE (6, FMT=9020) -88
834 CALL SAVERESULTS(TARRAY, L, MVOPP, -88)
835 INFO(2) = -1
836 CALL DUCPL(LDW, N, L, MAXPQ, MAXVW, M, MVEC, RESID, WORK,
837 + IWORK2, IWORK3, W, TOL, INFO)
838 GO TO 730
839 END IF
840

53

841 IF (INFO(2).EQ.1) THEN
842 C Perform the matrix-vector products
843 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,INFO(3)), TEMP, N)
844 CALL AMUX(N, TEMP, W(1, INFO(4)), RVALO, JNDXO, INDXO)
845 MVOPP = MVOPP + 1
846 GO TO 720
847 END IF
848

849 IF (INFO(2).EQ.2) THEN
850 C Perform the transpose matrix-vector products
851 CALL ATMUX(N, W(1,INFO(3)), TEMP, RVALO, JNDXO, INDXO)
852 CALL DGNLAMGTSOL(ILUPARAM, ILUPREC, TEMP, W(1, INFO(4)), N)
853 MVOPP = MVOPP + 1
854 GO TO 720
855 END IF
856

857 IF (INFO(1).NE.0) THEN
858 CALL CPU_TIME(TARRAY(2))
859 WRITE (6, FMT=9020) INFO(1)
860 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
861 GO TO 730
862 END IF
863

864 CALL CPU_TIME(TARRAY(2))
865

866 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,1), TEMP, N)
867 IF (ISNAN(TEMP(1))) THEN
868 INFO(1) = -99
869 WRITE (6, FMT=9020) INFO(1)
870 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
871 GO TO 730
872 END IF
873

874 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
875

876 C Solution found
877 WRITE (6, FMT=9000) L, (TEMP(I), I=1, NPRT)
878 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
879

880 IF (CALLS.LE.5) THEN
881 GO TO 710
882 END IF
883

884 730 CONTINUE
885

886 DEALLOCATE(WORK)
887 DEALLOCATE(IWORK2)
888 DEALLOCATE(IWORK3)
889

890 CC
891 CCCCCCCCCCCCCCCCCCCCCccccc TFQMR CCCCCCCCCCCCCCCCCCCCCCCCCC
892 CC
893 WRITE(10,3030) ’TFQMR’
894

895 CALLS = 0
896

897 DEALLOCATE(W)
898 ALLOCATE(W(LDW, 13))
899

900 810 CONTINUE

901 CALLS = CALLS + 1
902 RUNS = RUNS + 1
903 C Clear everything
904

905 CALL CLEARALL(IACT, N, W, LDW, LOCY, LOCZ, RESID, ICNTL, CNTL,
906 + INFO, ISAVE, RSAVE, RHS, PREC, TEMP, ETA)
907

908 CALL DCOPY(N, RHS, 1, W(1,2), 1)
909 L = N
910 TOL = ETA
911

912 C Perform an iteration of the method
913

914 CALL CPU_TIME(TARRAY(1))
915 820 CONTINUE
916 CALL DUTFX (LDW, N, L, W, TOL, INFO)
917

918 IF (MVOPP.GE.MAXMVP) THEN
919 CALL CPU_TIME(TARRAY(2))
920 WRITE (6, FMT=9020) -88
921 CALL SAVERESULTS(TARRAY, L, MVOPP, -88)
922 INFO(2) = -1
923 CALL DUTFX (LDW, N, L, W, TOL, INFO)
924 GO TO 830
925 END IF
926

927 IF (INFO(2).EQ.1) THEN
928 C Perform the matrix-vector products
929 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,INFO(3)), TEMP, N)
930 CALL AMUX(N, TEMP, W(1, INFO(4)), RVALO, JNDXO, INDXO)
931 MVOPP = MVOPP + 1
932 GO TO 820
933 END IF
934

935 IF (INFO(1).NE.0) THEN
936 CALL CPU_TIME(TARRAY(2))
937 WRITE (6, FMT=9020) INFO(1)
938 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
939 GO TO 830
940 END IF
941

942 CALL CPU_TIME(TARRAY(2))
943

944 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, W(1,1), TEMP, N)
945 IF (ISNAN(TEMP(1))) THEN
946 INFO(1) = -99
947 WRITE (6, FMT=9020) INFO(1)
948 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
949 GO TO 830
950 END IF
951

952 CALL SAVERESULTS(TARRAY, L, MVOPP, INFO(1))
953

954 C Solution found
955 WRITE (6, FMT=9000) L, (TEMP(I), I=1, NPRT)
956 IF (INFO(1).GT.0) WRITE (6, FMT=9010) INFO(1)
957

958 IF (CALLS.LE.5) THEN
959 GO TO 810
960 END IF

54

961

962 830 CONTINUE
963

964 1000 CONTINUE
965 CLOSE(10)
966 C Deallocate everything
967 C Deallocate data for the preconditioner
968 IF (ILUIERR.EQ.0) THEN
969 CALL DGNLAMGDELETE(ILUPARAM, ILUPREC)
970 END IF
971

972 DEALLOCATE(ILUIA)
973 DEALLOCATE(ILUJA)
974 DEALLOCATE(ILUA)
975 DEALLOCATE(ILUIND)
976

977 DEALLOCATE(W)
978

979 1010 CONTINUE
980

981 IF (PREC_TOL.LT.PREC_UPPER_TOL) THEN
982 IF (RUNS.GT.10) THEN
983 GO TO 7
984 END IF
985 END IF
986

987 DEALLOCATE(TEMP)
988 DEALLOCATE(SOLUTION)
989 DEALLOCATE(RHS)
990 DEALLOCATE(RVALO)
991 DEALLOCATE(JNDXO)
992 DEALLOCATE(INDXO)
993

994 GO TO 5
995 2000 CONTINUE
996 CLOSE(11)
997 STOP
998 3010 FORMAT (’% Matrix: name, N, NNZ’, / A18,
999 + ’, ’, I8, ’, ’, I10)

1000 3020 FORMAT (’% Prec: time, N, NNZ’, / F18.3,
1001 + ’, ’, I8,
1002 + ’, ’, I10,
1003 + / ’% Results: time, iter, m-v prod, error’)
1004 3030 FORMAT (’% ’ A)
1005 3031 FORMAT (’% BICGSTAB(’, I1, ’)’)
1006 3032 FORMAT (’% ’ I4)
1007 4010 FORMAT (’ New matrix: ’, A)
1008 4020 FORMAT (’ Reading matrix ’)
1009 4030 FORMAT (’ Converting to CSR ’)
1010 4035 FORMAT (’ Forming RHS ’)
1011 4036 FORMAT (’ No RHS file found ’)
1012 4037 FORMAT (’ Already done ’)
1013 4040 FORMAT (’ Building preconditioner ’)
1014 4050 FORMAT (’ Starting solvers ’)
1015 9000 FORMAT (/ ’ Solution found’, / I6, ’ iterations required ’,
1016 + //’ Solution = ’, / (1P, 5D10.2))
1017 9010 FORMAT (’ Warning: INFO(1) = ’, I3, ’ on exit ’)
1018 9020 FORMAT (’ Error return: INFO(1) = ’, I3, ’ on exit ’)
1019 9990 FORMAT (’ MATRIX NOT SQUARE ’)
1020 END PROGRAM TEST

1021

1022 C Subroutines used by BiCGSTAB(ell)
1023 SUBROUTINE MV(N, X, Y, NNZ, RVALO, JNDXO,
1024 + INDXO, ILUPARAM, ILUPREC, TEMP)
1025 INTEGER N
1026 DOUBLE PRECISION X(N), Y(N)
1027 DOUBLE PRECISION RVALO(NNZ), TEMP(N)
1028 INTEGER INDXO(N+1), JNDXO(NNZ)
1029 INTEGER*8 ILUPARAM, ILUPREC
1030 EXTERNAL AMUX, DGNLAMGSOL
1031 CALL DGNLAMGSOL(ILUPARAM, ILUPREC, X, TEMP, N)
1032 CALL AMUX(N, TEMP, Y, RVALO, JNDXO, INDXO)
1033 END SUBROUTINE MV
1034

1035 SUBROUTINE PRECSOLVE(N, X)
1036 INTEGER N
1037 DOUBLE PRECISION X(N)
1038 C Right precontitioning. Do nothing
1039 END SUBROUTINE PRECSOLVE
1040

1041 C Subroutine to save all results
1042 SUBROUTINE SAVERESULTS(TARRAY, ITER, MVOPP, ERROR)
1043 REAL TARRAY(2)
1044 INTEGER ITER, MVOPP, ERROR
1045 WRITE(10,100) TARRAY(2)-TARRAY(1), ITER, MVOPP, ERROR
1046 CALL FLUSH(10)
1047 MVOPP = 0
1048 RETURN
1049 100 FORMAT (F18.3, ’, ’, I8, ’, ’, I10,
1050 + ’, ’, I3)
1051 END SUBROUTINE SAVERESULTS55

E Implementation of the data analysis tool

56

1 #!/usr/bin/env python
2 # -*- coding: UTF-8 -*-
3

4 import os
5 import sys
6 import scipy
7 import matplotlib.pyplot as pyplot
8 from optparse import OptionParser
9 import shutil

10

11 import TableToLatex
12 import MatrixFileFetcher
13

14 class Parser(object):
15 ’’’ The parser class that parses the matrix files of a certain
16 preconditioner tolerance’’’
17

18 TIMETOL = 0.05
19 OFFTOL = 0.1
20 UPPERTOL = 150.0
21 MATRIXMODE = 4
22 COLUMNS = 4
23 MAX_MVPS = 20000
24

25 def __init__(self, prec_tol, prec_tols):
26 ’’’ constructor ’’’
27 self.mode = 0
28 self.solver = 0
29 self.options = self.set_options()
30 self.solver_dict = [’CORS’, ’BiCOR’, ’BiCGSTAB’, ’BiCG’,
31 ’CGS’, ’GMRES(100)’, ’BiCGSTAB(2)’, ’BiCGSTAB(3)’, ’QMR’, ’TFQMR’]
32 self.solver_used_amount = len(self.solver_dict)
33 self.exclude = sorted(self.options.exclude, reverse=True)
34 for i in self.exclude:
35 self.solver_dict.pop(i)
36 self.solver_amount = len(self.solver_dict)
37 self.prec_tol = prec_tol
38 self.prec_tols = prec_tols
39 self.prefix = ’./test’
40 self.matrix_file = ’’
41 self.matrix_parser = MatrixParser(Parser.COLUMNS)
42 self.matrix_name = ’’
43 self.matrix_number = 0
44 self.data = SolverData(self.solver_amount)
45 self.current = scipy.zeros([self.solver_used_amount,
46 Parser.COLUMNS + 1])
47 self.plotting_pattern = [’b-’, ’g--’, ’r-.’, ’c:’, ’m-’, ’y--’,
48 ’k-.’, ’b:’, ’g-’, ’r--’]
49 self.skip = False
50 self.rerun = ’’
51 self.time = 0
52

53 self.latex_list = []
54 self.current_latex_list = []
55 self.first = True
56

57 def run(self):
58 ’’’ run the parser ’’’
59 filename_list = os.listdir(self.prefix)
60 filename_list = sorted(filename_list, key=str.lower)

61 try:
62 matrix_file_list, dummy = MatrixFileFetcher.fetch()
63 matrix_file_list = matrix_file_list \
64 if (self.options.n <= 0 or self.options.n > len(matrix_file_list)) \
65 else matrix_file_list[0:self.options.n]
66 except IOError:
67 matrix_file_list = []
68 for filename in filename_list:
69 matrix, sep, prec_tol = filename.rpartition(’_’)
70 try:
71 prec_tol = float(prec_tol.rpartition(’.’)[0])
72 except ValueError:
73 print prec_tol
74 self.quit_on_error()
75 if prec_tol != self.prec_tol or (matrix_file_list and matrix not in

matrix_file_list):
76 if matrix_file_list and matrix not in matrix_file_list:
77 print ’Matrix not in matrix file list: ’, matrix
78 continue
79 self.current = scipy.zeros([self.solver_used_amount,
80 Parser.COLUMNS + 1])
81 self.mode = 0
82 self.solver = 0
83 self.skip = False
84 self.matrix_file = self.prefix+’/’+filename
85 matrix_file = open(self.matrix_file)
86 lines = matrix_file.readlines()
87 matrix_file.close()
88 for line in lines:
89 if line.startswith(’%’):
90 # line is a comment
91 self.mode += 1
92 if self.mode > Parser.MATRIXMODE:
93 # read the data of the previous solver into self.current
94 self.read()
95 self.solver += 1
96 self.matrix_parser.clear()
97 continue
98 elif self.mode == 1:
99 # line with the matrix name

100 spline = self.split(line)
101 self.matrix_name = spline[0]
102 self.current_latex_list = [self.matrix_name]
103 if self.options.verbose:
104 print ’Read: {}: {}’.format(self.matrix_number + 1,
105 self.matrix_name)
106 elif self.mode >= Parser.MATRIXMODE:
107 # line contains solver data
108 spline = self.split(line)
109 self.matrix_parser.add(spline)
110 if self.skip:
111 break
112 if self.skip:
113 continue
114 self.read()
115 self.write_time_to_file()
116 self.add()
117 self.draw_plot()
118 self.draw_latex_tables()
119 self.draw_table()

57

120

121 def split(self, line):
122 ’’’ separate the data on each line ’’’
123 spline = line.split(’,’)
124 for i in range(len(spline)):
125 spline[i] = spline[i].strip()
126 return spline
127

128 def read(self):
129 ’’’ read the data for one parser ’’’
130 if self.solver in self.exclude:
131 return
132

133 data = self.matrix_parser.read()
134

135 times = data[:, 0]
136 self.time += sum(times)
137 length = len(times)
138 if length == 0:
139 print ’Length is 0: {}’.format(self.matrix_name)
140 self.skip = True
141 return
142

143 average = float(sum(times)) / length
144

145 if self.matrix_parser.fail:
146 excl = len([item for item in self.exclude if item < self.solver])
147 err = int(data[0, 3])
148 # 1 is breakdown, 2 is iterations, 3 is NAN
149 error_type = 2 if (err < -3 and err > -99) \
150 or ((self.solver == 6 or self.solver == 7) and err == 1) \
151 or ((self.solver == 8 or self.solver == 9) and err == 4) \
152 else (3 if err == -99 else 1)
153 self.data.solver[self.solver - excl].error(error_type)
154 self.current[self.solver, 3] = data[0, 3]
155 self.write_to_current(average, data, error_type)
156 return
157

158 # check the time values for validity
159 for value in times:
160 if value < Parser.TIMETOL:
161 print ’Time too short: {}, {}, {}’.format(value,
162 average, self.matrix_name)
163 if not self.skip:
164 self.skip = True
165 self._move_matrix(’small’)
166 self._move_results(’small’)
167 if value > (1.0 + Parser.OFFTOL) * average:
168 print ’Result not accurate enough: {}, {}, {}’\
169 .format(value, average, self.matrix_name)
170 length -= 1
171 average = float(average * (length + 1)) / length
172

173 self.write_to_current(average, data)
174

175 def write_to_current(self, average, data, error=None):
176 ’’’ write the data to self.current ’’’
177 self.current[self.solver, 0] = average
178 self.current[self.solver, 1] = data[0, 1]
179 self.current[self.solver, 2] = data[0, 2]

180 self.current[self.solver, 3] = data[0, 3]
181 if error is None:
182 self.current_latex_list.append(’’)
183 elif self.solver not in self.exclude:
184 self.current_latex_list.append(
185 ’\\colorbox{yellow}{iterations}’ if error == 2 else \
186 (’\\colorbox{magenta}{NAN}’ if error == 3 else \
187 ’\\colorbox{red}{breakdown}’))
188

189 def add(self):
190 ’’’ add the data for the current matrix to self.data usning the
191 ratio method ’’’
192 if self.options.restriction is not None and not \
193 eval(str(self.current[int(self.options.restriction[0]), 3]) \
194 + self.options.restriction[1]):
195 return
196 for i in range(3):
197 self.ratio(i)
198 if not self.skip:
199 self.matrix_number += 1
200 self.latex_list.append(self.current_latex_list)
201 print ’Added: {}: {}’.format(self.matrix_number,
202 self.matrix_name)
203

204 def ratio(self, column):
205 ’’’ calculate the ratio and add it to self.data ’’’
206 invalid_runs = sorted([item for item in range(self.solver_used_amount) \
207 if self.current[item, 3] != 0 or item in self.exclude],
208 reverse = True)
209 stat = self.current[:, column]
210 valid_runs = list(stat)
211 for i in invalid_runs:
212 valid_runs.pop(i)
213 if valid_runs == []:
214 if column == 1:
215 print ’No valid runs at all: {}’.format(self.matrix_name)
216 if self.prec_tol == self.prec_tols[0]:
217 self._move_matrix(’bad’)
218 self._move_results(’bad’)
219 self.skip = True
220 winner = 1
221 else:
222 winner = min(valid_runs)
223 j = 0
224 latex_list = {}
225 # calculate the ratios of all used solvers and add them where needed
226 for i in range(self.solver_used_amount):
227 if i in self.exclude:
228 continue
229 if self.current[i, 3] != 0:
230 ratio = Parser.UPPERTOL
231 if column == 0 and self.options.verbose:
232 print ’Failed method: {}, {}’.format(self.matrix_name,
233 i)
234 elif column == 2 and (self.current[i, 3] == -88 or \
235 (self.current[i, 3] == 1 and (i == 6 or i == 7))) and \
236 self.current[i, column] < 20 * winner and \
237 self.current[i, column] >= Parser.MAX_MVPS:
238 if self.options.verbose:
239 print ’Max runs not enough: {}, {}, {}, {}’.format(\

58

240 self.matrix_name, i, winner,
241 self.current[i, column])
242 self.rerun += ’{!s}\n{:d}\n{:05.2f}\n{:d}\n’.format(\
243 self.matrix_name, i, self.prec_tol, int(winner))
244 else:
245 ratio = float(stat[i]) / winner
246 if ratio >= Parser.UPPERTOL:
247 print ’Ratio too high: {}, {}, {}, {}, {}’.format(stat[i],
248 winner, self.matrix_name, i, self.prec_tol)
249 print stat
250 self.quit_on_error()
251 if column == 2 and stat[i] > Parser.MAX_MVPS:
252 print ’Solver converged with more than {} mvps: {}, \
253 {}’.format(Parser.MAX_MVPS, stat[i], self.matrix_name)
254 self.data.solver[j].append(ratio, column)
255 latex_list[j] = ratio
256 j += 1
257 if column == 0:
258 sorted_latex_list = sorted(latex_list, key=latex_list.get)
259 for i, item in enumerate(sorted_latex_list):
260 if latex_list[item] != Parser.UPPERTOL:
261 self.current_latex_list[item+1] = (’\\colorbox{green!’+\
262 str(int(100/len(latex_list)*(len(latex_list)-i)))+\
263 ’!black}{’+str(i+1)+’}’)
264 #print self.current_latex_list[item]
265

266 def draw_latex_tables(self):
267 ’’’ draw a latex table of all the errors ’’’
268 tex_parser = TableToLatex.TableToLatex()
269 header_list = list(self.solver_dict)
270 header_list.insert(0, ’matrix name’)
271 tex_parser.set_header(header_list,
272 ’|p{100px}|’+ ’p{65px}|’*(len(header_list)-1))
273 tex_parser.add_package(’xcolor’)
274 tex_parser.set_table(self.latex_list)
275 tex_parser.make(’table’ + str(self.prec_tol))
276 tex_parser = TableToLatex.TableToLatex()
277 header_list = [’Solver’, ’breakdown’, ’iterations’, ’NAN’]
278 tex_parser.set_header(header_list)
279 table = []
280 for i in range(self.solver_amount):
281 table.append([self.solver_dict[i],
282 str(self.data.solver[i].errors),
283 str(self.data.solver[i].iter_errors),
284 str(self.data.solver[i].nan_errors)])
285 tex_parser.use_separator(False)
286 tex_parser.set_table(table)
287 tex_parser.set_caption(’Failures with a perconditioner tolerance of ’\
288 + str(self.prec_tol), str(self.prec_tol))
289 tex_parser.make(’failure_table’ + str(self.prec_tol))
290

291 def draw_table(self):
292 ’’’ draw a table containing some userful numbers ’’’
293 print ’Errors’
294 for i in range(self.solver_amount):
295 print ’{:12}: {}’.format(self.solver_dict[i],
296 self.data.solver[i].errors)
297 print ’More than max iterations’
298 for i in range(self.solver_amount):
299 print ’{:12}: {}’.format(self.solver_dict[i],

300 self.data.solver[i].iter_errors)
301 print ’Winner in terms of time’
302 for i in range(self.solver_amount):
303 print ’{:12}: {}’.format(self.solver_dict[i],
304 self.data.solver[i].timer.count(1.0))
305 print ’Winner in terms of matrix-vector products’
306 for i in range(self.solver_amount):
307 print ’{:12}: {}’.format(self.solver_dict[i],
308 self.data.solver[i].mvps.count(1.0))
309

310 def draw_plot(self):
311 ’’’ draw the plots ’’’
312 time_plot = self.make_figure(1)
313 mvp_plot = self.make_figure(2)
314 iter_plot = self.make_figure(3)
315 time_plot.savefig(str(self.prec_tol) + ’_time.png’, bbox_inches=’tight’)
316 mvp_plot.savefig(str(self.prec_tol) + ’_mvp.png’, bbox_inches=’tight’)
317 iter_plot.savefig(str(self.prec_tol) + ’_iter.png’, bbox_inches=’tight’)
318 #pyplot.show()
319

320 def make_figure(self, number):
321 ’’’ make a figure ’’’
322 figure = pyplot.figure()
323 #pyplot.subplots_adjust(left=0.1, right=0.1, top=0.1, bottom=0.1)
324 plot = figure.add_subplot(111)
325 for i in range(self.solver_amount):
326 if number == 1:
327 data = self.data.solver[i].timer
328 elif number == 2:
329 data = self.data.solver[i].mvps
330 elif number == 3:
331 data = self.data.solver[i].iterations
332 self._plot(data, i, plot)
333 leg = plot.legend(self.solver_dict, loc=4)
334 frame = leg.get_frame()
335 frame.set_alpha(0.8)
336 plot.set_xlabel(u’ ’, size=’large’)
337 plot.set_ylabel(u’ ()’, size=’large’)
338 return figure
339

340 def _plot(self, data, index, plot):
341 ’’’ specify what the plot looks like ’’’
342 xlim = self.options.xlim if self.options.xlim > 1 else 10
343 x = scipy.arange(1, xlim, xlim/1000.0)
344 y = []
345 for xi in x:
346 y.append(1.0 / self.matrix_number * \
347 len([item for item in data if item <= xi]))
348 plot.plot(x, y, self.plotting_pattern[index], linewidth=2)
349 plot.set_xlim([1, xlim])
350 plot.set_ylim([0, 1.1])
351 plot.hold(True)
352

353 def write_time_to_file(self):
354 if self.first:
355 time_file = open(’time.txt’, ’w’)
356 self.first = False
357 else:
358 time_file = open(’time.txt’, ’a’)
359 time_file.write(self.matrix_name+’ (’+str(round(sum(self.current[:,0])))+’)

59

\n’)
360 time_file.close()
361

362 def _move_matrix(self, dest):
363 ’’’ move a bad matrix ’’’
364 for pref in [’’, ’_b’, ’_rhs1’, ’_x’]:
365 name = self.matrix_name + pref + ’.mtx’
366 try:
367 os.rename(’/home/sven/matrices/’ + name,
368 ’/home/sven/matrices-’ + dest + ’/’ + name)
369 except OSError, err:
370 if pref == ’’:
371 print ’Moving matrix failed: {}, {}’.format(name, err)
372

373 def _move_results(self, dest):
374 ’’’ move bad test results ’’’
375 if dest == ’small’:
376 pref = ’./test-small/’
377 else:
378 pref = ’/home/sven/matrices-bad/’
379 for tol in self.prec_tols:
380 try:
381 name = self.matrix_name + ’_%05.2f.txt’ % tol
382 os.rename(self.prefix + ’/’ + name, pref + name)
383 except OSError, (errno, err):
384 if errno == 18:
385 try:
386 shutil.move(self.prefix + ’/’ + name, pref + name)
387 except IOError:
388 if dest == ’small’ or tol == self.prec_tols[0]:
389 print ’Moving results failed: {}, {}’\
390 .format(name, err)
391 else:
392 pass
393 elif dest == ’small’ or tol == self.prec_tols[0]:
394 print ’Moving results failed: {}, {}’.format(name, err)
395 else:
396 pass
397 return
398

399 def quit_on_error(self):
400 ’’’ error ’’’
401 print ’Aborting: an error occured’
402 sys.exit(1)
403

404 def set_options(self):
405 ’’’ set all options ’’’
406 option_parser = OptionParser()
407 option_parser.add_option(’-x’, ’--xlim’, dest=’xlim’, default=10,
408 type=’float’,
409 help=’the maximum ratio on the x axis of the plots’)
410 option_parser.add_option(’-l’, dest=’l’, default=3,
411 type=’int’,
412 help=’the value of l to use in BiCGSTAB(l), 0 means both’)
413 option_parser.add_option(’-e’, ’--exclude’, dest=’exclude’,
414 type=’int’, action=’append’,
415 help=’solver to exclude’)
416 option_parser.add_option(’-r’, ’--restriction’, dest=’restriction’,
417 type=’string’, nargs=2,
418 help=’only use the matrices where solver has an error \

419 conform to the supplied test, i.e. 5 \’<-4\’ \
420 means solver 5 has an error value smaller than -4’)
421 option_parser.add_option(’-v’, ’--verbose’, dest=’verbose’,
422 action=’store_true’, default=False,
423 help=’print more output (failed methods)’)
424 option_parser.add_option(’-n’, ’--filelim’, dest=’n’, default=0,
425 type=’int’,
426 help=’the amount of matrices to parse’)
427 (options, args) = option_parser.parse_args()
428 # add bicgstab(l) to the exclude list
429 if options.exclude is None:
430 options.exclude = []
431 if options.l == 2:
432 options.exclude.append(options.l + 5)
433 elif options.l == 3:
434 options.exclude.append(options.l + 3)
435 return options
436

437 class MatrixParser(object):
438 def __init__(self, columns):
439 self.runs = 6
440 self.columns = columns
441 self.clear()
442

443 def clear(self):
444 self.length = 0
445 self.data = scipy.zeros([self.runs, self.columns])
446 self.fail = False
447

448 def add(self, line):
449 for i, value in enumerate(line):
450 self.data[self.length, i] = \
451 float(value) if ’.’ in value else int(value)
452 if int(line[3]) != 0:
453 self.fail = True
454 self.length += 1
455

456 def read(self):
457 return self.data[0:self.length, :]
458

459 class SolverData(object):
460 ’’’ class that contains the data of all solvers using multiple
461 Solver objects’’’
462 def __init__(self, amount):
463 self.solver = []
464 self.amount = amount
465 for i in range(self.amount):
466 self.solver.append(Solver())
467

468 class Solver(object):
469 ’’’ class that contain the data of one solver ’’’
470 def __init__(self):
471 self.timer = []
472 self.iterations = []
473 self.mvps = []
474 self.errors = 0
475 self.iter_errors = 0
476 self.nan_errors = 0
477

478 def error(self, error_type):

60

479 if error_type == 1:
480 self.errors += 1
481 elif error_type == 2:
482 self.iter_errors += 1
483 elif error_type == 3:
484 self.nan_errors += 1
485

486 def append(self, ratio, number):
487 if number == 0:
488 self.timer.append(ratio)
489 elif number == 1:
490 self.iterations.append(ratio)
491 elif number == 2:
492 self.mvps.append(ratio)
493

494 def main():
495 ’’’ main method ’’’
496 def write_to_file(text):
497 ’’’write the results to a file’’’
498 f = open(’rerun.txt’, ’w’)
499 f.write(text)
500 f.close()
501

502 tolerances = [0.1, 1.0, 10.0]
503 rerun = ’’
504 time = 0
505 for i, tol in enumerate(tolerances):
506 parser = Parser(tol, tolerances)
507 parser.first = (i == 0)
508 parser.run()
509 rerun += parser.rerun
510 time += parser.time
511 parser = None
512 print ’Total time: {}’.format(time)
513 write_to_file(rerun)
514

515 if __name__ == "__main__":
516 main()

61

	Introduction
	Krylov subspace methods
	The Krylov subspace
	Arnoldi's method
	Different approaches
	The GMRES method
	Preconditioning

	The Petrov-Galerkin projection
	The basics
	The two-sided biconjugate A-orthonormalisation method
	The biconjugate A-orthonormalisation procedure for solving general linear systems

	The BiCOR method
	The CORS method
	Computational aspects
	Preconditioning
	Stopping criteria
	Implementational aspects

	Numerical experiments
	Information about the experiments
	Data analysis
	Results
	Speed
	Reliability

	Conclusion
	Acknowledgments
	Problems
	Problem types
	Problems with 2D/3D geometry
	Problems that normally do not have 2D/3D geometry

	Problem list

	Implementation of BiCOR
	User documentation
	Argument lists and calling sequence
	Initialization of the control parameters
	Solving Ax=b

	Control parameters
	Error values
	General information

	Implementation

	Implementation of CORS
	User documentation
	Argument lists and calling sequence
	Initialization of the control parameters
	Solving Ax=b

	Control parameters
	Error values
	General information

	Implementation

	Implementation of the testing application
	Implementation of the data analysis tool

