

faculteit Wiskunde en

Natuurwetenschappen

Elimination based hybrid

methods for solving time-

dependent PDEs.

Bacheloronderzoek Wiskunde

December 2011

Student: F.J. Koerts

Eerste Begeleider: dr. ir. F.W. Wubs

Tweede Begeleider: dr. K. Camlibel

Contents

1 Introduction 3

2 Definition of the problem 5

3 (Quasi) stationary solutions 8

4 Use of subgrids 9
4.1 Special cases . 13
4.2 Parallel computing . 13
4.3 (Quasi) stationary approximations and elimination 14
4.4 Implementation of boundary conditions 14

5 Investigation 15
5.1 Stability investigation . 16
5.2 Investigation of convergence w.r.t. ∆t 19
5.3 Investigation of convergence w.r.t. ω 24
5.4 Investigation of convergence w.r.t. k 33

6 Conclusion and discussion 41

7 Appendices 45

A Linear case 45

B The code 47
B.1 EN . 47
B.2 ENRK4 . 56
B.3 ENRK2 . 57

8 References 58

2

1 Introduction

This thesis can be seen as a preliminary investigation on numerically solving
time-dependent non-linear PDEs based upon elimination . With elimination we
mean the process of decomposing a grid into two parts such that the state on
one of these parts is substituted into the state of the other part. Elimination
enables us to compute the state on the latter subgrid independent of the first
one, where we might use different solving techniques. Here we will consider only
the one-dimensional case, whereas in most practical situations, a higher dimen-
sional model is required. This gives rise to a proposal for continued investigation
on this topic, which can be found in the section ’conclusion and discussion’. In
its turn, this topic can also been seen as a continued investigation on Jolanda
Heijnen’s thesis [1]. In that thesis, the (linear) heat equation is solved using an
integration-(quasi) stationary hybrid method. In several ways we try to obtain
results for more general cases.

We give an example of a case where elimination on higher dimensional mod-
els is useful. Consider a 2-dimensional grid that is decomposed into some
non-overlapping subdomains and separator groups (1-dimensional boundaries
between subdomains). See figure 1. The state on the subdomains can be elim-
inated exactly, hereby making use of independent processors. The required
time to solve the whole system is highly dependent of interaction between the
subdomains, which takes place via the separators. The unknowns on the sep-
arators are connected to all other separators in other domains (the matrix is
irreducible). This requires that information from one processor has to go to
every other processor. By transforming the problem to an explicit approach we
can form a block diagonal matrix so that only communication with neigbouring
nodes are needed. For more information we refer to [4].

This higher-dimensional case is beyond the scope of this thesis. Here I con-
sider a 1-dimensional grid which is divided into two subgrids which we denote
by a coarse and a fine subgrid. See figure 2. The fine subgrid consists of iso-

Figure 1: the areas in grey correspond to subdomains which we want to compute
independent of each other. Separator nodes are marked in blue.

3

Figure 2: 1-dimensional grid where the coarse (red) subgrid divides the fine
(blue) subgrid into subdomains which can be computed independent of each
other

lated nodes, which divides the fine subgrid into a number of subdomains. The
variables of each group of the fine subgrid can be eliminated and computed
in a parallel way, using an implicit integration method or a (quasi) stationary
method. After elimination we have a reduced system of ODEs where the vari-
ables belong to the coarse subgrid. If we employ an explicit integration method
on that system, we only need communication with neighbouring nodes to per-
form one time step. Thus we obtain two hybrid methods: implicit-explicit (in-
tegration) methods and integration-(quasi) stationary methods. In this thesis,
special attention is drawn for this integration-(quasi) stationary hybrid method.

A (quasi) stationary solution is the solution which is obtained by setting
some order derivative equal to zero. Hence, if a (quasi) stationary method is
applied to some subgrid, no time integration is needed. An advantage is that
the state can be computed in one iteration process on the corresponding sub-
grid(s). However, the method can only be applied in situations which vary little
in time (i.e. which is smooth in time) and it will lead to an approximation of the
original system. A sufficient condition for the state to be computable, is that
the state on the boundary nodes is known, including its derivatives. Hence, if
an integration-(quasi) stationary method is used, in each time step the state on
the subgrid to which explicit integration is applied, is computed first. Then the
boundary state of each group is known and the state on the other subgrid can
be computed.

An example of a non-linear partial differential equation (PDE) which I con-
sider is the Burgers’ equation, which appears mainly in modeling of fluid dynam-
ics. In many applications, a (quasi) stationary solution is a good approximation
of the real solution. For example, if we want to simulate the Earth’s tide, which
is a phenomenon caused by the moon, we can use such a stationary solution
since the frequency of about 12 hours is relatively low. Another example can
be found in modeling of air dynamics around the rotor of a helicopter with
constant rotation speed. The Burgers’ equation is enclosed in the Navier-Stokes

4

equations, which gives in this case a periodic solution too.

Research questions include stability and accuracy of some (combination of)
methods which are described above. In doing this, we will investigate their
relation with the grid partitioning, the time step, (in the case of (quasi) sta-
tionary (hybrid) methods:) the order of derivative which is set to zero, and the
frequency of a periodic Dirichlet boundary condition. This will be investigated
for full integration methods (where we use either one integration method, or a
hybrid implicit-explicit method), the full (quasi) stationary method and hybrid
integration-(quasi) stationary methods as described above.

2 Definition of the problem

We consider a second order non-linear PDE, discretized in space of the form:

du

dt
= Au(t) + r(u(t)) + f(t) (1)

Here, r(u) is some non-linear term, which we assume to be of a bilinear form
r(u) = 〈u,u〉, where 〈−,−〉 denotes an inner product. In this thesis, we will
specify it as a quadratic form: r(u) = diag(u)Bu.

Integration methods for solving non-linear PDEs of the form (1), can be clas-
sified into explicit and implicit methods. Indeed, both types come with their
own advantages and disadvantages. A disadvantage of explicit methods like the
forward Euler method, is the small time step which is required to guarantee
stability. On the other hand, implicit methods like the Backward Euler method
require bigger computational costs per iteration. However, they generally allow
a much bigger time step than explicit methods do. In this thesis I consider
another method for solving (1), namely a combination of an implicit and an
explicit method. The idea is to partition the grid into two sets of grid points,
which I will call the subgrids. Now, the state on one of these sets of points
will be used explicitly to solve (1), while the state on the other will be used to
implicitly solve the PDE. Thus we try to combine the advantages of implicit
methods (bigger stability) and explicit methods (less computational costs).

It is not only integration methods which we will investigate. By making the
assumption that the k-th order derivative of the state u(k) = 0, for some k and
state u on one or both of subgrids, integration in time is not needed. These
assumptions, (quasi) stationary assumptions, can be applied to solutions which
vary little in time and will lead to an approximation of the original system. In
that case, the state u can be computed in one iteration process on the corre-
sponding subgrid(s).

Unfortunately, it was not always possible to draw conclusions about the general

5

equation (1). In these cases, we tried to find statements for a special case, the
Burgers’ equation, which reads:

du

dt
= µuxx(t)− u(t)ux(t) (2)

The PDE (1) can be described inside a system of equations which contains
also the integration method. Once the state is known on time step j, this system
is solvable for the state on a given time step j + 1 (multi-step methods leaved
out of consideration). For example, if we take the forward Euler method, the
following system arises:

{
vj = Auj + 〈uj ,uj〉+ f(t)
uj+1 = uj + ∆t · vj (3)

Here we have substituted v = du
dt and the exponential j refers to the approx-

imation on the j’th time step. In this example it is clear that the system can
be solved for uj+1 explicitly by first computing vj from the ’PDE part’ (first
rows), and then substitute this in the ’method part’ (bottom rows). If we would
have used the backward Euler method, the system becomes:{

vj+1 = Auj+1 + 〈uj+1,uj+1〉+ f(t+ ∆t)
uj+1 = uj + ∆t · vj+1

Obviously, this system cannot be solved explicitly. In order to solve for uj+1,
we can perform a number of Newton steps. This can be done after rewriting the
systems such that the left-hand side becomes zero. For notational convenience,
in the ongoing text we use u = uj+1 and v = vj+1. We now have:{

F1(y) ≡ −v + Au + 〈u,u〉+ f(t+ ∆t)
F2(y) ≡ −u + uj + ∆t · v

Here, we have defined the system state y and, respectively, shall define the
system F(y) as follows:

y =

(
u
v

)
, F(y) =

(
F1(y)
F2(y)

)
and consider uj and vj to be constant. A Newton step then reads:

y1 = y0 + JF(y0)−1F(y0)

for some initial guess y0. Here, JF(y0) is the Jacobian matrix evaluated at
y0. This matrix assumes the following form:

JF(y0) =

(
d
duF1(y0) d

dvF1(y0)
d
duF2(y0) d

dvF2(y0)

)

6

In general, with yi we mean the approximation of the system state y yielded
by the i’th Newton step. In the case we use a backward Euler method, and for
initial guess y0 = yj ≡ (uj ,vj)T , we get:

JF(yj) =

(
A + g(B,uj) −I

−I ∆tI

)
where g(B,u) = diag(Bu) + diag(u)B.

If we use an explicit integration method instead, we obtain a Jacobian which
gives rise to easier solving the system:

JF(yj) =

(
A + g(B,uj) −I

−I 0

)
From this matrix it can also be seen that v can be easily computed from the

integration method part (bottom part), once u is known.

Convergence of yi to the system state y for i → ∞, is dependent of the
dominance of the non-linear term. For systems whose non-linear term is not
dominant, i.e. a non-linear system whose linearization is locally a good approx-
imation to the original one, convergence will be fast. Of more interest, is the
question whether u is a good approximation of u(t + ∆t), the real solution.
Therefore, we ask ourselves which conditions have to be satisfied in order to
guarantee stability.

So far, we varied the integration method inside system F. Now we make
an approximation on the original equation (1), so that the system is easier to
solve. Instead of using u we will now use uj , making the PDE part explicit. In
combination with the Backward Euler method, the following system appears:{

F1(y) ≡ −v + Auj + 〈uj ,uj〉+ f(t)
F2(y) ≡ −u + uj + ∆t v

Note that, with respect to u, this system is equivalent to system (3). The
Jacobian now assumes a much simpler form:

JF(yj) =

(
0 −I
−I ∆tI

)
From this matrix it can be seen that u can be easily computed from the PDE

part (upper part), once v is known. Of course, also a variant is possible where
both the PDE part and the integration method are explicit. This combination
is unfavorable, since it will generally give rise to less stable solutions, while the
computational costs do not decrease.

7

3 (Quasi) stationary solutions

Solutions of the PDE (1) which change slowly in time, can also be approximated
by a (quasi) stationary solution, i.e. a solution for which u(k)(t) = 0 for some
k. In periodic solutions, this solution becomes generally a better approximation
of the real solution if the period is larger, since then |uj(t)| is less for all j ∈ N.

In the previous section, we described a way to put equation (1) alongside the
integration method in a system F from which the state on the (j + 1)’th time
step can be solved for. If we use a (quasi) stationary approximation instead,
i.e. u(k)(t) = 0 for some k, we can also form a system which consists of the
stationary assumption alone if k = 1. Note that this stationary assumption
equals the right-hand side of the PDE:{

F1(y) ≡ Au + 〈u,u〉+ f(t+ ∆t)

If k > 1, then the system consists of the (derivatives of the) PDE together
with the (quasi) stationary assumption, which is in fact the (k − 1)st order
derivative of the right-hand side of the PDE. The k − 1 different derivatives of
the PDE are needed to link u(k) with the state u. The following system then
appears:



F1(y) ≡ −U1 + AU0 + φ0(B,U) + f(t+ ∆t)
...
Fj+1(y) ≡ −Uj+1 + AUj + φj(B,U) + f (j)(t+ ∆t)
...
Fk−1(y) ≡ −Uk−1 + AUk−2 + φk−2(B,U) + f (k−2)(t+ ∆t)
Fk(y) ≡ AUk−1 + φk−1(B,U) + f (k−1)(t+ ∆t)

(4)

In this system, we have substituted Uj = u(j), which first must be treated
as seperate variables for each j. All Uj are concatenated in the matrix U =
(U0 . . .Uk). We consider φj(B,U) as the j-th derivative of 〈u,u〉 with respect
to t. It is defined as follows:

φj(B,U) =

j∑
i=0

(
j
i

)
〈Ui,Uj−i〉 (5)

The binomial coefficients can be explained as follows. For the derivative of
〈u(i),u(j)〉 with respect to time, we have:

d

dt
〈u(i),u(j)〉 = 〈u(i+1),u(j)〉+ 〈u(i),u(j+1)〉

It can be shown easily that the process of repeatedly making a derivative
of 〈u,u〉, is similar to Pascal’s triangle, each row representing the k’th order
derivative and, except for the coefficients, each entry inside a row representing

8

one term of the right-hand side of (5). For each of these terms, a binomial
coefficient therefore occurs.

In order to solve (4), we can again perform some Newton steps, where y is
defined as:

y =


U0

U1

...
Uk


Then, the Jacobian assumes the following form:

JF(yj) =


A + g0,0(B,U0) −I 0 · · ·
g1,0(B,U1) A + g1,1(B,U0) −I 0 · · ·

...
. . .

. . .

gk,0(B,Uk) gk,1(B,Uk−1) · · · A + gk,k(B,U0)


where we have defined the function gj,i as:

gj,i(B,u) =

(
j
i

)
(diag(Bu) + diag(u)B)

Note that, in notation of the previous section, g = g0,0 = g1,0 = g1,1.

4 Use of subgrids

We will start with the given equation (1). The rows of this system can be
rearranged in such a way that the rows corresponding to a certain subset of
grid nodes appear on top, while the other rows appear on bottom. We refer to
the first and latter subset of the grid nodes simply as the ’first subgrid’ and the
’second subgrid’, respectively. We thus get a system of the form:

d

dt

(
u1

u2

)
=

(
A11 A12

A21 A22

)(
u1

u2

)
+

(
r1(u)
r2(u)

)
+

(
f1(t)
f2(t)

)
(6)

Here, u1 and u2 refers to the state on the first subgrid and the second subgrid,
respectively. In the ongoing text, we assume that these vectors have length n1

and n2 respectively, such that the dimensions of u satisfy n = n1 + n2.

Now we have a system consisting of the PDE for the two subgrids, we can extend
this system with an integration method or a (quasi) stationary approximation
for both the first and second subgrid, such that the state can be computed. This
gives rise to 4 possibilities. In order to separate different cases, we introduce the
following notations: for i ∈ {1, 2}, if an integration method is used to compute

9

ui, then we define βi = 0, otherwise βi = 1, and k is the smallest integer for

which we assume that u
(k)
i = 0. If we restrict the system to be of size n (k = 1),

we obtain the following system:



F1,1(y) ≡ β1

(
A11u1 + A12u2 + 〈u,u〉1 + f1(t+ ∆t)

)
+ ...

(1− β1)ϕ1(u1,v1)
F1,2(y) ≡ β2

(
A21u1 + A22u2 + 〈u,u〉2 + f2(t+ ∆t)

)
+ ...

(1− β2)ϕ2(u2,v2)
F2,1(y) ≡ −v1 + A11u1 + A12u2 + 〈u,u〉1 + f1(t+ ∆t) (β1 = 0)
F2,2(y) ≡ −v2 + A21u1 + A22u2 + 〈u,u〉2 + f2(t+ ∆t) (β2 = 0)

Here, ϕi(ui,vi), i ∈ {1, 2} describes a solving technique different from a
(quasi) stationary assumption, e.g. an integration method. Since ϕi depends
not only on the state ui, but also on the first order derivative vi, we have to add
to the system a link between ui and vi in the case that βi = 0. This link is given
by the upper or bottom part of the rearranged PDE, which therefore appears in
the bottom rows of the system if and only if this ϕi is used on the corresponding
subgrid. Furthermore, 〈u,u〉i refers to the first (i = 1), or bottom (i = 2) ni
rows of 〈u,u〉, and more generally:

〈p,q〉i = (pi,Bi1q1 + Bi2q2)

We might use ϕi as an integration method such as the implicit theta method.
This yields:

ϕi(ui,vi) = −ui + uji + ∆t [θivi + (1− θi)vji],

which we want to be zero for some predefined θi. ϕi can also appear as
a multistage method, such as the family of Runge-Kutta methods. For exam-
ple, if we use Heun’s method, an explicit RK2 method, we have the following
description of ϕi:

ũ = uj + ∆t rhs(uj(t))

ϕ(ui) ≡ −ui + uji +
∆t

2

(
rhs(uj(t)) + rhs(ũ(t))

)
i

Here, rhs(u(t)) is the right-hand side of the PDE, i.e. rhs(u(t)) = Au(t) +
r(u(t)) + f(t). In this definition of ϕ, the stages of the multistage method are
supposed to be evaluated right behind each other. Note that ũ is evaluated on
the whole subgrid in the first stage, which might give undesired results if we had
specified a better method on the other subgrid. This is because ϕi might suffer
from propagation of errors of ũ caused by the first-stage method on the whole
grid, instead of only on a coarse subgrid. A natural way to avoid this problem
is to solve a system in each stage of the multistage method. In the first stage
of the RK2 example above, a system has to be solved where the forward Euler
method is used on one subgrid (θ-method with θi = 0), while another method
can be used for the other subgrid. This defines ũ, which is now evaluated by

10

means of the desired method on each subgrid. The second stage then defines ϕi
which can be used to form another system, which we want to solve for the final
state u on time step j + 1.

In most cases, we will use k = 2, in which case we have:



F1,1(y) ≡ −v1 + A11u1 + A12u2 + 〈u,u〉1 + f1(t+ ∆t)
F1,2(y) ≡ −v2 + A21u1 + A22u2 + 〈u,u〉2 + f2(t+ ∆t)
F2,1(y) ≡ β1

(
A11v1 + A12v2 + 〈u,v〉1 + 〈v,u〉1 + f ′1(t+ ∆t)

)
+ . . .

(1− β1)ϕ1(u1,v1)
F2,2(y) ≡ β2

(
A21v1 + A22v2 + 〈u,v〉2 + 〈v,u〉2 + f ′2(t+ ∆t)

)
+ . . .

(1− β2)ϕ2(u2,v2)

For the linear case, see appendix A. In general, for all k > 1, we can set up the

system, for which we consider Uj,i as u
(j)
i (i ∈ {1, 2}) , and, as we did previously,

Uj as u(j). We use the definitions φj,i(B,U) =
∑j
l=0

(
j
l

)
〈Ul,Uj−l〉i,U =

(U0,U1 . . .Uk) and, similar to what we defined in the previous section, U =
(U0 . . .Uk). At least, we have U(1) = (U0,1,U1,1 . . .Uk,1) and U(2) = (U0,2,U1,2 . . .Uk,2)
For these definitions, we assume i ∈ {1, 2}, since it refers to variables correspond-
ing to one of the two subgrids. We eventually get:



F1,1(y) ≡ −U1,1 + A11U0,1 + A12U0,2 + φ0,1(B,U) + f1(t+ ∆t)
F1,2(y) ≡ −U1,2 + A21U0,1 + A22U0,2 + φ0,2(B,U) + f2(t+ ∆t)

F2,1(y) ≡ −U2,1 + A11U1,1 + A12U1,2 + φ1,1(B,U) + f
(1)
1 (t+ ∆t)

F2,2(y) ≡ −U2,2 + A21U1,1 + A22U1,2 + φ1,2(B,U) + f
(1)
2 (t+ ∆t)

...
Fk−1,1(y) ≡ −Uk−1,1 + A11Uk−2,1 + A12Uk−2,2 + φk−2,1(B,U) + . . .

f
(k−2)
1 (t+ ∆t)

Fk−1,2(y) ≡ −Uk−1,2 + A21Uk−2,1 + A22Uk−2,2 + φk−2,2(B,U) + . . .

f
(k−2)
2 (t+ ∆t)

Fk,1(y) ≡ β1

(
A11Uk,1 + A12Uk,2 + φk,1(B,U) + f

(k)
1 (t+ ∆t)

)
+ . . .

(1− β1)ϕ1(u1,v1)

Fk,2(y) ≡ β2

(
A21Uk,1 + A22Uk,2 + φk,2(B,U) + f

(k)
2 (t+ ∆t)

)
+ . . .

(1− β2)ϕ2(u2,v2)
(7)

11

The corresponding state y is given by:

y =



U0,1

U0,2

U1,1

U1,2

...
Uk,1

Uk,2


This enables us to set up the Jacobian: JF(yj) =

A0 −I 0
B1,1 A1 −I 0

...
. . .

Bk−1,k−1 Bk−1,k−2 . . . Bk−1,1 Ak−1 −I

B† B‡ B#
k−2 . . . B#

1 A#

 (8)

where

Aj =

(
A11 + ψj,0,1 A12 + ηj,0,1
A21 + ηj,0,2 A22 + ψj,0,2

)
A# =

(
β1(A11 + ψk,0,1) β1(A12 + ηk,0,1)
β2(A21 + ηk,0,2) β2(A22 + ψk,0,2)

)
Bj,i =

(
ψj,i,1 ηj,i,1
ηj,i,2 ψj,i,2

)
B† =

(
β1ψk,k,1 − (1− β1)I β1ηk,k,1

β2ηk,k,2 β2ψk,k,2 − (1− β2)I

)

B‡ =

(
β1ψk,k−1,1 − (1− β1)θ1∆t I β1ηk,k−1,1

β2ηk,k−1,2 β2ψk,k−1,2 − (1− β2)θ2∆t I

)

B#
i =

(
β1ψk,i,1 β1ηk,i,1
β2ηk,i,2 β2ψk,i,2

)
Furthermore,

ψj,i,l = ψj,i,l(B,U(1),U(2)) =

(
j
i

)
(diag(Bl1Ui,1 + Bl2Ui,2) + diag(Ui,l)Bll)

ηj,i,1 = ηj,i,1(B,U(1)) =

(
j
i

)
diag(Ui,1)B12

ηj,i,2 = ηj,i,2(B,U(2)) =

(
j
i

)
diag(Ui,2)B21

12

Remark An extension of this system can be made by varying in treating u1

and u2 implicitly or explicitly in the PDE part, similar to what we did in section
2. Theoretically, this gives rise to 4 possibilities. However, if the state on one
subgrid is treated explicitly while it is treated implicitly on the other one, than
the matrix A affects strongly the difference between the resulting solution and
the solution yielded from treating the subgrids equally, which we want to avoid.
Therefore, only two possibilities of four are feasible. If u1 and u2 are treated
implicitly in the PDE part, then we define α = 1, otherwise (i.e. both u1 and
u2 are treated explicitly in the PDE part), α = 0. Although the α and βi seems
to be free parameters, not any combination yields a feasible solution. From
the structure of the Jacobian and the matrix B†, we conclude that a necessary
condition for the system to have a feasible solution, is that if β1 = 1 or β2 = 1,
then α = 1. Consistency in time steps requires that if α = 0 and an integration
method is used on ui, then θi = 1. So if α = 0, then we require that β1, β2 = 0
and θ1, θ2 = 1. However, the resulting combination of parameters is equivalent
to α = 1, β1, β2 = 0, θ1, θ2 = 0 in that it gives rise to the same solution. In
other words, if α = 0, then we have to use explicit integration methods on
both subgrids. Since in most cases it is unnecessary to use two different explicit
integration methods, use of subgrids becomes unnecessary as well. For this
reason we consider α as a redundant parameter and we refer to section 2 for
solving a system with explicit use of the variables in the PDE part.

4.1 Special cases

In the special case that k = 1, the Jacobian assumes the form

JF(yj) =

(
β1(A11 + ψ0,0,1)− (1− β1)I β1(A12 + η0,0,1)

β2(A21 + η0,0,2) β2(A22 + ψ0,0,2)− (1− β2)I

)

In the case that k = 2, the Jacobian assumes the form

JF(yj) =

(
A0 −I
B† A∗

)
where

A∗ =

(
β1(A11 + ψ1,0,1)− (1− β1)θ1∆t I β1(A12 + η1,0,1)

β2(A21 + η1,0,2) β2(A22 + ψ1,0,2)− (1− β2)θ2∆t I

)

4.2 Parallel computing

Suppose we are given tridiagonal matrices A and B (which occurs very often,
since the state on some node is most affected by nodes which are in its neigh-
bourhood, and less affected by nodes further away). Define the second subgrid
to consist of isolated nodes (with at least one node of the other subgrid between

13

each of them), eliminate the corresponding state (u2) and compute it with an
explicit integration method. Then, if one time step is performed, the state on a
node of the first subgrid (say u1,j) does not depend on the state of another node
u1,k of the first subgrid if between them there exists some node which belongs
to the second subgrid. Therefore, the nodes of the second subgrid divides the
first subgrid into groups that can be computed in parallel. In general, if A and
B are both matrices of bandwidth m� n and the nodes of the second subgrid
are clustered in groups of at least m neighbouring nodes, then the first subgrid
consists of groups of nodes that can be computed in parallel, which are divided
by the clustered nodes of the second subgrid.

4.3 (Quasi) stationary approximations and elimination

If we use an explicit integration method for one subgrid, while we use a (quasi)
stationary approximation for the other subgrid, what is the mathematical mean-
ing of such a system? The integration method can be thought of as solution
which depends on the first order derivative in time, whereas the (quasi) station-
ary is independent of this first order derivative. This implies that we do not
need an initial condition to obtain a (quasi) stationary solution. In fact, we
need only the boundary conditions, which might be time-dependent.

As usual, we assume that u2 is evaluated by an explicit integration method.
In each time step, the state on the corresponding subgrid is computed first.
Assume further that each group of neighbouring nodes in the first subgrid can
be computed in parallel. Then the state on the two neighbouring nodes of each
such a group belongs to the second subgrid and can be seen as ’local’ (Dirichlet
or Neumann or higher) boundary conditions, since they are already computed.
Between these nodes, a (quasi) stationary solution is then obtained. Since in
this solution only the boundary conditions are needed, the (quasi) stationary
approximation can be seen as an interpolating method, which yields smooth
solutions close to the real solution for sufficiently smooth real solutions.

4.4 Implementation of boundary conditions

Boundary conditions are required to solve the PDE (1). We assume that these
are Dirichlet or Neumann conditions. The system can be adapted easily in
implementing the boundary conditions. If we express the Dirichlet or Neumann
condition in terms of the grid nodes, then it forms an equation which can be
substituted in the system. If we assume that the grid is from L to R, then the
Dirichlet condition u(L) = a(t), or u(R) = b(t), for a, b ∈ R can be written as:

u1 = a(t), un = b(t)

A Neumann condition u′(L) = a(t), or u′(R) = b(t), can be approximated
by:

14

u2 − u1

h
= a(t),

un − un−1

h
= b(t)

5 Investigation

In all investigations that are done, the Burgers’ equation (2) is considered, where
µ = 0.1 on a grid consisting of 50 nodes with equal distance from 0 to 1. We
define a Dirichlet boundary condition on the left side

u(0, t) = 1 + 0.1 sin(ωt)

for some ω ∈ R, while on the right boundary we set a Neumann condition
ux(1, t) = 0. In the limit of t, the solution will be periodic with period T = 2π

ω .
For several methods described in the previous sections, our goal is to determine
the asymptotic maximum error with respect to space (all nodes) and time (in
one period). The reference solution is computed using a full integration method
(namely, a Runge-Kutta 4 method), without making use of subgrids. For this
solution we have used a small time step of ∆t = 5 ·10−5. By comparing (a part)
of this solution to solutions with even a smaller time step, it turned out that
the error cannot be smaller. This was no problem, since this error was in the
order of 10−15, close to machine precision.

The methods are fully defined in terms of the parameters described in section
4. In the experiments, these are:

method grid∗ β1 β2 θ†1 θ†2
Full QS 1 1 - - -
Full RK4 1 0 - RK4 -
Full CN 1 0 - CN -
I/QS: RK4 1,2 1 0 - RK4
I/QS: RK2 1,2 1 0 - RK2
I/QS: CN 1,2 1 0 - CN
I/QS: BE 1,2 1 0 - BE
I/QS: FE 1,2 1 0 - FE
I/I: RK4/CN 1,2 0 0 CN RK4
I/I: RK2/CN 1,2 0 0 CN RK2
I/I: RK4/CN 1,2 0 0 BE RK4
I/I: RK2/CN 1,2 0 0 BE RK2

∗ the subgrids which are used
† the integration method used on the first subgrid
‡ the integration method used on the second subgrid

Here, RK4, RK2, CN, BE, FE refer to the Runge-Kutta 4, Runge-Kutta 2,
Crank-Nicolson, Backward Euler and Forward Euler method, respectively. The
method with FE will only be used in the stability investigation and for this

15

method we set B = 0, i.e. we treat the linear case. Throughout this section, we
assume that we perform the explicit integration method on the second subgrid.

If we refer to u[meth](t) as the solution of the equation on time t according
to method meth, then for each method, we wish to determine the asymptotic
maximum error in space and time:

ε[meth] ≡ lim
t→+∞

(
max

x, s∈[t,t+T]
|u[meth](s)− u[ref](s)|

)
Since the exact value will be very hard to determine for an arbitrary initial

value, we approximate ε as follows: we choose ω such that T is a multiple of ∆t.
Then in each period, we measure the maximum error in space and time with
regard to our reference solution. Since the error is computed at the same ’ar-
gument’ in each period, these maximum errors can be compared to each other.
When the maximum does not change anymore up to a relative difference of
10−3, then ε is determined by the last computed maximum error.

Three types of investigation have been performed. The first one is a stabil-
ity investigation, in which the stability of the 12 methods are determined for
different values of ω, the value k and different grid partitions. The second one is
a convergence investigation, in which we tried to find the order of convergence
with respect to the time step ∆t. This has been done for all described methods
except the integration-QS hybrid method with FE, and various values of ω, k
and different grid partitions. The third investigation is a broad investigation in
which the convergence with respect to ω and k are determined and where the
other variables are varied as much as possible.

5.1 Stability investigation

In this investigation, the stability of the 12 methods are determined for each
combination of the following values of ω, the value k and grid partitions:

ω∗ k second subgrid
8 0 1:2:n
4 1 1:4:n
2 2 1:8:n
1 3 [17 42]
.5 [33]
.25
.125

∗ in fact, these values are approximations. The used values are such that T is a
multiple of ∆t = 2∗10−3, obtained by the following code (the used ω is such that
ωused=ratio*ωtabular):

dt0=2e-3; r=10;
maxw=8;

16

m=r*round(2*pi/(r*maxw*dt0));
maxwcorr=2*pi/(m*dt0);
ratio=maxwcorr/maxw;

Empirically, for each combination of parameters, the maximum value of ∆t
is determined for which the solution is stable. This has been done with an
accuracy of two digits. It turned out that ω did not affect this value. The
results with respect to the other variables are shown below:

Full (quasi) stationary approximation

This method turns out to be always stable unless the solution crosses the u-axis.
In that case, there exists no time step for which it becomes stable. This is exactly
what we expect, since the (quasi) stationary approximation is independent of
the first order derivative in time. It only depends on the boundary conditions.

Full time integration: RK4

For this method, distinction in various values of k and grid partitions is not
relevant. We use the whole grid as one subgrid and we obtained the following
maximum time step:

∆t = 0.0029

Full time integration: CN

This method turns out to be always stable too. This is indeed what we expect
since Crank-Nicolson is an unconditionally stable implicit integration method.

Integration-(quasi) stationary hybrid: FE (linear case)

Note that for this case, B is set to zero. The results for this method are shown
below:

index2 ↓ k→ 1 2 3 4
1:2:n 0.0041 0.0042 0.0042 0.0042
1:4:n 0.0084 0.0131 0.015 0.015
1:8:n 0.018 0.058 0.077 0.084
[17 42] 0.068 0.72 0.86 0.88
[33] 0.26 7.2 7.9 7.9

We see that the coarser the second subgrid, the bigger is the allowed time
step, especially for bigger k. Also, we note that for increasing k, the results are
better too. For k = 2, we will verify the results. From appendix A.1, it follows
that v2, the first order derivative of the state on the coarse subgrid, can be given
as: v2 = D(u2 + vj2), where D = −(I + A21A

−2
11 A12)−1(−A22 + A21A

−1
11 A12).

The absolute stability region of the forward Euler method is |z + 1| ≤ 1, where
z = ∆t λi and λi is the i’th eigenvalue of the matrix D. This must hold for all

17

eigenvalues of this matrix, thus |σ(D) + ∆t| ≤ ∆t. Hence, the eigenvalues of
D must lie in a circle with radius ∆t centered around −∆t. In the case of real
eigenvalues, all eigenvalues have to be non-positive and if so, we expect that the
maximum time step can be computed by: ∆t = −2/minλi∈σ(D) λi. We have
verified that in the cases for k = 2, D contains indeed real, negative eigenvalues.
The minimum ones are -475.82, -152.02, -34.164, -2.7515, -0.27614 for the grid
partitions in the same order as described above. All these values indeed yield
the maximum time step equal to the results above.

Integration-(quasi) stationary hybrid: RK4

The results for this method are shown below:

index2 ↓ k→ 1 2 3 4
1:2:n 0.0041 0.0058 0.0058 0.0058
1:4:n 0.0045 0.0067 0.010 0.015
1:8:n 0.0045 0.0089 0.020 0.044
[17 42] 0.0045 0.011 0.047 0.18
[33] 0.0045 0.012 0.054 0.24

A similar observation can be made: in general, bigger k and a finer subgrid
2 yield better results. If we compare these values to the full RK4 method, we
notice overall improvement. However, the improvement of the maximum allowed
time step for bigger k and a finer subgrid 2 is not as good as in the previous
experiment with forward Euler. Although the linear case is treated there, it
cannot explain the big difference, since the equation is not highly non-linear.
Furthermore, a similar experiment where the linear case is treated yields very
similar results. It remains a question why this RK4 hybrid method gives mostly
worse results with regard to the FE hybrid method, however we think that a
wrong implementation is responsible for this observation.

Integration-(quasi) stationary hybrid: RK2

The results for this method are shown below:

index2 ↓ k→ 1 2 3 4
1:2:n 0.0041 0.0041 0.0042 0.0042
1:4:n 0.0041 0.0084 0.012 0.014
1:8:n 0.0041 0.016 0.043 0.052
[17 42] 0.0041 0.034 0.25 0.53
[33] 0.0041 0.039 0.34 0.65

Again, we obtain similar results: in general, bigger k and a finer subgrid 2
yield a bigger maximum time step and the results are in most cases worse with
regard to the FE hybrid method. However, we notice that it is something better
than the previous experiment. Also, this is strange. We would expect that RK4
gives results which are at least as good as results of RK2 which are in its turn
at least as good as result of FE. We obtain opposite results.

18

Integration-(quasi) stationary hybrid: CN

This method turns out to be always stable. This is indeed what we expect since
both the (quasi) stationary and the Crank- Nicolson method have no stability
limits.

Integration-(quasi) stationary hybrid: BE

This method turns out to be always stable too. This is indeed what we expect,
for the same reasons as above.

Implicit-explicit methods

index2 ↓ method→ CN&RK4 CN&RK2 BE&RK4 BE&RK2
1:2:n 0.0041 0.0041 0.0041 0.0041
1:4:n 0.0045 0.0041 0.0045 0.0041
1:8:n 0.0045 0.0041 0.0045 0.0041
[17 42] 0.0045 0.0041 0.0045 0.0041
[33] 0.0045 0.0041 0.0045 0.0041

We notice a marginal difference between the several methods. Furthermore,
it seems that the grid partition does not affect the stability limit strongly.

5.2 Investigation of convergence w.r.t. ∆t

In this investigation we tried to find the order of convergence with respect to
the time step ∆t. This has been done for all described methods, k = 2, ω = 0.5∗

and all combinations of various values of ∆t and different grid partitions, given
in the diagram below:

∆t second subgrid
2∗10−3 2:2:n
1∗10−3 2:4:n
5∗10−4 2:8:n
2.5∗10−4 [17 42]

[33]

∗ in fact, this value is an approximation. The used values are such that T is a multiple
of ∆t = 2∗10−3, as in the previous investigation.

Note that for each used value of ∆t, T is a multiple of ∆t. The order
of convergence is determined by the slope of the linear least squares solution
through the points (log(∆t), log(ε)). The results are shown below:

19

Subgrid 2: 2:2:n

METHOD A B

’Full QS’ [-7.9191e-007] [-6.1308]
’Full Int: RK4’ [-0.15638] [-43.321]
’Full Int: CN’ [1.9722] [-10.194]
’I/QS: RK4 2:2:n’ [-0.23267] [-18.159]
’I/QS: RK2 2:2:n’ [-0.36375] [-19.713]
’I/QS: CN 2:2:n’ [-1.2823e-006] [-15.235]
’I/QS: BE 2:2:n’ [-0.35372] [-19.591]
’I/I: RK4/CN 2:2:n’ [1.8379] [-12.854]
’I/I: RK2/CN 2:2:n’ [2.3486] [-6.4578]
’I/I: RK4/BE 2:2:n’ [0.86633] [-9.0507]
’I/I: RK2/BE 2:2:n’ [0.78078] [-10.062]

The above results are obtained from a linear least squares approach and have
to be read as: ε = 2A

2log(∆t)+B = ∆tA2B .

The QS solution doesn’t converge at all. This is because this method is
independent of any state in the past: it assumes a solution which is funda-
mentally different. RK4 shows the best results, but its convergence seems to
stagnate. This is probably due to the fact that the error approaches machine

20

precision. CN shows the expected convergence order of 2. All integration-QS
hybrid methods don’t converge as well. Obviously, this is caused by the QS
part of the method. However, in absolute sense, these errors are decreased with
regard to the error of the QS method by a factor of about 103, which must be
caused by the integration part. Remarkable results can be found for ∆t = 0.002,
where the maximum error is smaller than for smaller values of ∆t. It might be
that the error due to the integration part cancels out partly the error due to the
QS part (at least, for this specific set of parameters). Implicit-explicit methods
converge with an order equal to the order of the used integration method with
the biggest error. In the case CN is used, this number will be approximately 2
since RK4 and RK2 give better results than order 2 method CN. Similarly, for
BE, this number is approximately 1.

Integration-(quasi) stationary hybrid methods

METHOD A B

’I/QS: RK4 2:2:n’ [-0.23267] [-18.159]
’I/QS: RK2 2:2:n’ [-0.36375] [-19.713]
’I/QS: CN 2:2:n’ [-1.2823e-006] [-15.235]
’I/QS: BE 2:2:n’ [-0.35372] [-19.591]
’I/QS: RK4 2:4:n’ [-0.13069] [-14.459]
’I/QS: RK2 2:4:n’ [-0.17173] [-14.947]
’I/QS: CN 2:4:n’ [-9.5994e-007] [-12.816]

21

’I/QS: BE 2:4:n’ [-0.049019] [-13.428]
’I/QS: RK4 2:8:n’ [-0.064292] [-11.459]
’I/QS: RK2 2:8:n’ [-0.079919] [-11.645]
’I/QS: CN 2:8:n’ [1.1882e-008] [-10.649]
’I/QS: BE 2:8:n’ [-0.010512] [-10.78]
’I/QS: RK4 [17 42]’ [-0.028583] [-8.7298]
’I/QS: RK2 [17 42]’ [-0.03474] [-8.8032]
’I/QS: CN [17 42]’ [-1.0306e-006] [-8.3694]
’I/QS: BE [17 42]’ [-0.0018363] [-8.3924]
’I/QS: RK4 33’ [-0.016015] [-7.7272]
’I/QS: RK2 33’ [-0.019357] [-7.767]
’I/QS: CN 33’ [-1.3515e-006] [-7.5253]
’I/QS: BE 33’ [-0.00063627] [-7.5332]

For all integration-QS hybrid methods used, we see that the order of con-
vergence is approximately 0. This is what we expect from the QS part, which
doesn’t show convergence and its error dominates the error caused by the inte-
gration part. Note that the finer subgrid 2, the better the results are. Since the
QS method yields bigger errors in our time step range, we would indeed expect
that the finer subgrid 1, the bigger is the influence of the QS part and the bigger
the maximum error. As in the previous plot, we notice a significant reduction
of the error for bigger ∆t in the order of 10−5 for all partitions. Also in this
case, I assume that the error due to the integration part cancels out partly the
error due to the QS part. We notice further that this cancellation error seems
to be the biggest for the RK2 method and negligible for the RK4 method. This
is probably because RK4 integration gives smaller errors than RK2. If we focus
our attention to smaller ∆t, then distinction of the error cannot be made be-
tween the several methods: for all integration methods used, the error is then
negligible in comparison with the error caused by the QS part, even for a coarse
subgrid 2.

22

Implicit-explicit methods

METHOD A B

’I/I: RK4/CN 2:2:n’ [1.8379] [-12.854]
’I/I: RK2/CN 2:2:n’ [2.3486] [-6.4578]
’I/I: RK4/BE 2:2:n’ [0.86633] [-9.0507]
’I/I: RK2/BE 2:2:n’ [0.78078] [-10.062]
’I/I: RK4/CN 2:4:n’ [1.9289] [-11.133]
’I/I: RK2/CN 2:4:n’ [1.3999] [-18.997]
’I/I: RK4/BE 2:4:n’ [0.95672] [-7.3364]
’I/I: RK2/BE 2:4:n’ [0.93885] [-7.5481]
’I/I: RK4/CN 2:8:n’ [1.9554] [-10.58]
’I/I: RK2/CN 2:8:n’ [1.8696] [-12.055]
’I/I: RK4/BE 2:8:n’ [0.98313] [-6.7829]
’I/I: RK2/BE 2:8:n’ [0.97638] [-6.863]
’I/I: RK4/CN [17 42]’ [1.9664] [-10.334]
’I/I: RK2/CN [17 42]’ [1.9422] [-10.774]
’I/I: RK4/BE [17 42]’ [0.99374] [-6.5421]
’I/I: RK2/BE [17 42]’ [0.99127] [-6.5714]
’I/I: RK4/CN 33’ [1.9698] [-10.26]
’I/I: RK2/CN 33’ [1.9585] [-10.469]
’I/I: RK4/BE 33’ [0.99686] [-6.4699]
’I/I: RK2/BE 33’ [0.99564] [-6.4844]

23

The first we notice is that the CN methods yield better results, both with
respect to the absolute error (in our time step range) and the order of conver-
gence, which is about 2 for the CN methods and 1 for BE methods. A better
explicit method doesn’t improve the results: RK4 hybrid methods don’t per-
form better than RK2 hybrid methods. This is what we expect: the order of
convergence is determined by the lowest order of the methods used, in each case
this is the order of the implicit methods. However, the finer the subgrid to
which the explicit method is performed, the bigger is the influence of the errors
caused by this method. This explains probably the more irregular course for
the RK2 method with fine subgrid 2.

5.3 Investigation of convergence w.r.t. ω

In this investigation, we will look how the maximum error evolves if the fre-
quency of the solution is increased. We focus on the QS method, integration-
QS methods with k = 2, implicit-explicit methods and two cases for several
methods with k = 2 (subgrid 2: 2:2:n and [33]), where we begin with.

k = 2, subgrid 2: 2:2:n

METHOD A B

’Full QS’ [1.9709] [-4.1977]
’Full Int: RK4’ [2.9957] [-36.9933]
’Full Int: CN’ [2.9759] [-24.9061]

24

’I/QS: RK4 2:2:n’ [1.9356] [-14.7725]
’I/QS: RK2 2:2:n’ [1.9374] [-17.2917]
’I/QS: CN 2:2:n’ [1.9355] [-13.3620]
’I/QS: BE 2:2:n’ [1.9376] [-16.9193]
’I/I: RK4/CN 2:2:n’ [2.9785] [-26.7772]
’I/I: RK2/CN 2:2:n’ [3.0139] [-23.9523]
’I/I: RK4/BE 2:2:n’ [1.9352] [-15.3641]
’I/I: RK2/BE 2:2:n’ [1.9371] [-17.8013]

The order of convergence with respect to ω for different methods is shown
above (under column A). A and B have similar meanings as above: ε = ωA2B .

The results above are shown for k = 2. Subgrid 2 is 2:2:n when a hybrid
method is used. The full QS method yields an order of 1. For higher k, the
order is getting higher and satisfies being O(ωk). This will be further outlined
in a later subsection.

Although we don’t have many results, it seems that for all hybrid meth-
ods, as we would expect, it assumes the order of the methods which yields the
biggest error. Another, less solid presumption, is that for full integration meth-
ods (which aren’t affected by k), the order of convergence with respect to ω
exceeds the order of convergence with respect to ∆t by one. However, for RK4
we then would expect an order of 5 instead of 3. I presume therefore that (at
least) two processes determines this convergence order, however it is still a ques-
tion which processes these are. Actually, we need more observations to explain
these numbers. Therefore we investigate the behaviour of the hybrid methods
with respect to ω later.

One notable thing is the flattening of the curve for higher values of ω. At
first sight, we thought that this was due to similar magnitudes of the error and
the solution itself. However, as we shall see later more obviously, the flattening
is as good as visible for much lower errors. Another explanation is the following:
if ω is big, then we have a very short period T in which errors have less time to
propagate in integration methods. As we will see later, this phenomenon cannot
be seen at (full) QS methods. Furthermore, note that the QS method is not
stable anymore for higher ω. This is because the error becomes so big, that the
solution crosses the u-axis, which gives troubles due to the non-linear term (the
Jacobian then becomes singular).

25

k = 2, subgrid 2: [33]

METHOD A B

’I/QS: RK4 33’ [1.9678] [-5.6798]
’I/QS: RK2 33’ [1.9684] [-5.7029]
’I/QS: CN 33’ [1.9656] [-5.6012]
’I/QS: BE 33’ [1.9654] [-5.6048]
’I/I: RK4/CN 33’ [2.9762] [-24.9579]
’I/I: RK2/CN 33’ [2.9722] [-25.1177]
’I/I: RK4/BE 33’ [1.9349] [-13.5426]
’I/I: RK2/BE 33’ [1.9350] [-13.5565]

The data reveals that the order of convergence has not been changed with
respect to the previous result. In this data, subgrid 2 is taken to be very
coarse, so we expect that the error is mainly determined by the method used
on the other subgrid. To begin with, the errors of the integration-QS hybrid
methods are indeed barely influenced by the integration method, which causes
the red/yellow lines to be hardly distinctive. Furthermore, we see that they show
a course of the error that is quite similar to that of the QS method which is shown
in the previous plot. We obtain similar results for implicit-explicit methods.
Since the error is hardly affected by the more accurate explicit method, each
implicit-explicit method shows a curve similar to the curve of the used implicit
methods alone (in the case of CN, this can be seen in the previous plot).

26

(Quasi) stationary method

METHOD A B

’k: 1’ [0.9968] [-3.4854]
’k: 2’ [1.9864] [-4.1616]
’k: 3’ [3.0967] [-5.2531]
’k: 4’ [3.9647] [-6.5619]
’k: 5’ [5.2536] [-7.4736]

In this plot, the maximum errors of the full QS method are given for several
k, together with their linear least squares approximation over the nodes with
lowest ω in grey. We see that, except for k = 2, the error could not be deter-
mined for high ω. As earlier stated, this might be due to negative solutions,
which causes the Jacobian to be singular. For k = 2 and k = 5, we notice a
very different course of the plot for higher ω. I presume that the case for k = 5
is an inaccurate result due to a high condition number of the Jacobian. The
flattening for k = 2 is explained in a previous result.

We notice that for small ω, the errors are smaller for higher k and that the
order of convergence is approximately equal to k. Another interesting thing of
this is plot is the intersection of all least squares maximum errors at ω ≈ 2. For
all k, the maximum error is approximately 0.2 at ω = 2. We will show that the
error ε can be written as ε = c1 (c2ω)k, where c1 and c2 are constants. Denote

27

by u and u the exact solution of the PDE and the solution obtained by the QS
method, respectively. From system (4) where all φj are vanished, we can write
u explicitly in terms of f(t) and its derivations:

u = −
(
A−kf (k−1)(t) + . . .+ A−1f (0)(t)

)
On the other hand, the exact solution u can be written as follows:

u(t) = C eAt

dC

dt
=
du

dt
e−At − u(t)Ae−At = f(t)e−At

u(t) =

∫ t

0

f(s)eA(t−s)ds (9)

By performing partial integration k times on the right-hand side of (9), we
obtain the following expression for u(t):

u(t) = −
k∑
i=1

Aif (i−1)(t) +

k∑
i=1

AieAtf (i−1)(0) +

∫ t

0

A−keA(t−s) d
kf

dsk
ds

Since limt→∞ eAt = 0, the second term vanishes and we can write the max-
imum error ε as:

ε = max
t
‖u(t)− u(t)‖∞

=

∥∥∥∥∫ t

0

A−keA(t−s) d
kf

dsk
ds

∥∥∥∥
∞

≤
∥∥∥∥∫ t

0

A−keA(t−s)ds

∥∥∥∥
∞

max

∣∣∣∣dkfdsk

∣∣∣∣
=
∥∥A−k−1(−I + eAt)

∥∥
∞ max

∣∣∣∣dkfdsk

∣∣∣∣
=
∥∥A−k−1

∥∥
∞ max

∣∣∣∣dkfdsk

∣∣∣∣
= γ |λmin(A)|−k−1

max

∣∣∣∣dkfdsk

∣∣∣∣
for t → ∞ and γ being approximately constant for k ≥ 0 in the order of 1.

In our investigation, we used f(t) = 1 + 0.1 sin(ωt). This yields:

ε ≤ 0.1γ |λmin(A)|−k−1
ωk

for k ≥ 1. This is indeed of the form ε = c1 (c2ω)k, where c1 = 0.1γ|λmin|−1

and c2 = |λmin|−1. More general, c2 is approximated by the inverse of the mini-
mum eigenvalue of A in absolute sense, while c1 is determined by the amplitude
of the solution multiplied by γc2.

28

k = 2, integration-QS hybrid methods

METHOD A B

’I/QS: RK4 2:2:n’ [1.9356] [-14.7725]
’I/QS: RK2 2:2:n’ [1.9374] [-17.2917]
’I/QS: CN 2:2:n’ [1.9355] [-13.3620]
’I/QS: BE 2:2:n’ [1.9376] [-16.9193]
’I/QS: RK4 2:4:n’ [1.9364] [-11.6431]
’I/QS: RK2 2:4:n’ [1.9364] [-12.0282]
’I/QS: CN 2:4:n’ [1.9366] [-10.9415]
’I/QS: BE 2:4:n’ [1.9364] [-11.2131]
’I/QS: RK4 2:8:n’ [1.9401] [-9.1039]
’I/QS: RK2 2:8:n’ [1.9398] [-9.2262]
’I/QS: CN 2:8:n’ [1.9409] [-8.7671]
’I/QS: BE 2:8:n’ [1.9407] [-8.8240]
’I/QS: RK4 [17 42]’ [1.9539] [-6.6132]
’I/QS: RK2 [17 42]’ [1.9541] [-6.6580]
’I/QS: CN [17 42]’ [1.9534] [-6.4666]
’I/QS: BE [17 42]’ [1.9532] [-6.4767]
’I/QS: RK4 33’ [1.9678] [-5.6798]
’I/QS: RK2 33’ [1.9684] [-5.7029]
’I/QS: CN 33’ [1.9656] [-5.6012]
’I/QS: BE 33’ [1.9654] [-5.6048]

29

Here, results are plotted for integration-QS hybrid methods with k = 2 for
several grid partitions. The finer subgrid two is, the better are the results in
absolute sense. Doubling the size of subgrid 2 results in smaller errors, espe-
cially when subgrid 2 is already fine. If subgrid 2 is coarse, then the effect of
doubling of its size is marginal. I think a better criterion would be to look at
the ratio of the sizes of subgrid 1 and subgrid 2: only for a fine subgrid 2, this
ratio change heavily by doubling the size of subgrid 2.

If we look to the convergence order with respect to ω for small values of ω,
then we see that this number is constant. It is neither affected by the type of the
integration-QS hybrid method, nor from the grid partition. This allows us to
state a general formula for ε of integration-QS hybrid methods, which becomes:
ε = C(k) ωk. Here, C(k) depends on k, the grid partition and the integration
method used, but does not depend on ω. We will specify this formula later.

We note further that for coarser subgrid 2, the difference between the solu-
tions of the used hybrid methods becomes smaller: once more, this is caused
by the small influence of the integration methods. Next we notice that there
is no obvious consistency in which method is the best: probably, in some cases
the error due to integration cancels out the error due to the QS assumption
partly while in other case they amplify each other. For now, it can be seen as
coincidence: it depends on an unknown set of parameters whether they amplify
or cancel out each other. At least, we notice once more the flattening of the
error for bigger ω, especially for methods with small absolute errors. Methods
with fine subgrid 2 are more sensitive to this phenomenon. This is because only
integration methods show this phenomenon: in periodic solutions, the error has
in each iteration very less time to grow if ω is big. Therefore, the reduced num-
ber of time steps per period compensates for the increased error generated each
time step. This reasoning doesn’t hold for low ω, since the number of time steps
per period is no bottleneck to form a maximum error. We conclude that the
integration-QS hybrid methods give better results for low ω and fine subgrid 2.

30

k = 2, implicit-explicit methods

METHOD A B

’I/I: RK4/CN 2:2:n’ [2.9785] [-26.7772]
’I/I: RK2/CN 2:2:n’ [3.0139] [-23.9523]
’I/I: RK4/BE 2:2:n’ [1.9352] [-15.3641]
’I/I: RK2/BE 2:2:n’ [1.9371] [-17.8013]
’I/I: RK4/CN 2:4:n’ [2.9775] [-25.5622]
’I/I: RK2/CN 2:4:n’ [2.9935] [-26.0179]
’I/I: RK4/BE 2:4:n’ [1.9350] [-14.1486]
’I/I: RK2/BE 2:4:n’ [1.9351] [-14.3874]
’I/I: RK4/CN 2:8:n’ [2.9770] [-25.1780]
’I/I: RK2/CN 2:8:n’ [2.9519] [-26.4152]
’I/I: RK4/BE 2:8:n’ [1.9349] [-13.7643]
’I/I: RK2/BE 2:8:n’ [1.9350] [-13.8454]
’I/I: RK4/CN [17 42]’ [2.9759] [-25.0091]
’I/I: RK2/CN [17 42]’ [2.9676] [-25.3491]
’I/I: RK4/BE [17 42]’ [1.9348] [-13.5941]
’I/I: RK2/BE [17 42]’ [1.9348] [-13.6227]
’I/I: RK4/CN 33’ [2.9762] [-24.9579]
’I/I: RK2/CN 33’ [2.9722] [-25.1177]
’I/I: RK4/BE 33’ [1.9349] [-13.5426]
’I/I: RK2/BE 33’ [1.9350] [-13.5565]

In order to avoid a mess in the plot, we show only the RK4 hybrid methods.
The results for the RK2 cases are similar. Roughly speaking, we notice the same

31

phenomena as in the plot above. Firstly, the finer subgrid 2 (which is responsible
for the better explicit integration method), the better the results are. However,
the order of convergence depends on the worst integration method, and doesn’t
depend on the grid partition. As we saw before, doubling of the size of subgrid
2 gives a marginal effect if subgrid 2 is rather small for the same reasons as
stated above. The flattening of the plots can be explained similar as above. At
first sight you might note that this flattening is stronger for BE methods. But
as we correct for the order of convergence, this is not so obvious. Further, we
still assume that the order of convergence with respect to ω exceeds the order
of convergence with respect to ∆t of the method which yields the biggest error
by one. This can be explained as follows (we treat the linear case):

Consider du
dt = Au(t) + feiωt. Substituting u(t) = veiωt and dividing by

eiωt, we obtain:
iωv = Av + f

v = (iωI −A)−1f

Now consider the Euler method for

un+1 = un + ∆tAun + ∆tfeiωn∆t

Substituting un = v̂eiωn∆t and dividing by eiωt yields:

v̂ =
(eiω∆t − 1

∆t
I −A

)−1
f

Error:

u(tn)− un =
[
(iωI −A)−1 −

(eiω∆t − 1

∆t
I −A

)−1]
f eiωt

Bringing the part between brackets to the same denominator, we get in the
numerator: (eiω∆t − 1

∆t

)
I −A− (iωI −A) =

− iω
2∆t

2
I +O(ω3∆t2)

So the convergence in ω is one order higher than that in ∆t. For the more
general case of forcing with more frequencies we have:

du

dt
= Au +

M∑
j=1

fje
iωjt

We pose u(t) =
∑M
j=1 vje

iωjt ⇒ vj = (iωjI − A)−1fj , j = 1, ...,M . etc A

particular choice is f sinωt = f
(
eiωt−e−iωt

2i

)
where ω and −ω are involved.

32

5.4 Investigation of convergence w.r.t. k

Of special interest is the investigation of convergence with respect to k for
integration-QS hybrid methods. Of course, we hope that we can improve these
hybrid methods by choosing a higher value of k. We outline one case with low
ω, a case with higher ω, and three methods in particular: the hybrid methods
with RK4 and CN and the full QS method, where we begin with.

Full QS method

METHOD A B

’w: 1/8’ [-4.0177] [-2.3230]
’w: 1/4’ [-2.9842] [-2.3678]
’w: 1/2’ [-1.9178] [-2.4694]
’w: 1’ [-0.7622] [-2.7493]
’w: 2’ [2.0315] [-5.4918]
’w: 4’ [1.8840] [-4.6634]
’w: 8’ [NaN] [NaN]

The data approximates ε = 2Ak+B in a least squares sense.

The least squares solutions are added to the plot in grey. We observe that
higher k not always yield better results. The order of convergence with respect
to k is obviously better (more negative) for smaller ω. Moreover, in absolute
sense, decreasing ω yields also smaller maximum errors. A remarkable result is

33

the coincidence of the least squares solutions for smaller ω at k = 0. It turns
out that this value is approximately 0.2. In the investigation on QS methods
in the previous paragraph, we already encountered this number as an upper
bound for the error and the maximum error at ω = 2 for all k. The fact that
solutions intersect at k = 0, is consistent with the formula for the maximum
error we derived there. It is given as ε = c1 (c2ω)k, for some constants c1, c2 and
ω sufficiently small. Filling in k = 0 or ω = c−1

2 , we obtain ε = c1, which is a
constant independent of ω and k. Results can be improved by choosing a higher
k if ω satisfies c2ω < 1. For high values of ω, we noticed different behaviour in
the previous paragraph. This might explain that the least squares solution of
higher ω do not coincide in the same point in the plot above.

ω ≈ 1/8

METHOD A B

’Full QS’ [-4.0177] [-2.3230]
’I/QS: RK4 2:2:n’ [-12.5555] [4.3202]
’I/QS: RK2 2:2:n’ [-11.1386] [-0.0378]
’I/QS: CN 2:2:n’ [-12.1295] [4.8140]
’I/QS: BE 2:2:n’ [-5.9282] [-4.6421]
’I/QS: RK4 2:4:n’ [-10.9123] [3.9804]
’I/QS: RK2 2:4:n’ [-10.9569] [3.7529]
’I/QS: CN 2:4:n’ [-10.7728] [4.2000]

34

’I/QS: BE 2:4:n’ [-6.2152] [-1.9672]
’I/QS: RK4 2:8:n’ [-8.8851] [2.3761]
’I/QS: RK2 2:8:n’ [-8.8591] [2.2471]
’I/QS: CN 2:8:n’ [-8.8665] [2.5281]
’I/QS: BE 2:8:n’ [-6.3059] [-0.9049]
’I/QS: RK4 [17 42]’ [-7.3320] [1.2375]
’I/QS: RK2 [17 42]’ [-7.3222] [1.1905]
’I/QS: CN [17 42]’ [-7.3012] [1.2695]
’I/QS: BE [17 42]’ [-6.2424] [-0.1456]
’I/QS: RK4 33’ [-5.5657] [-0.7842]
’I/QS: RK2 33’ [-5.5590] [-0.8106]
’I/QS: CN 33’ [-5.5709] [-0.7376]
’I/QS: BE 33’ [-5.5803] [-0.7261]

We first have to note that the data above should be seen as a very rough
indication for CN and BE methods, since the error is far from linear with re-
spect to k. Furthermore, if k = 1, the CN method is in fact a BE method. The
pink star at k = 1 therefore represents the full BE integration method, while
the other pink star represents the full CN integration method.

In general, the results are better for higher k. From the plot we conclude
that a finer subgrid 2 gives not only rise to a smaller error in absolute sense,
but also to a lower convergence order with respect to k. Thus, the reduction of
the error for higher k cannot be fully caused by the QS part of the methods.
For QS hybrid methods and small ω we obtain ε = C(k) ωk, where C(k) may
depend on k, but not on ω. Since the order of convergence with respect to k
is highly dependent of the grid partition and the integration method used, the
same holds for C(k). We can specify the formula as: ε = c1 (c2ω)k, just as in
the case of the full QS method. c1 might depend on the grid partition and the
integration method, but is independent of k and ω. The same holds for c2. We
can verify this formula via ε = C(k)ωk, from where we show that C(k) = c1 c

k
2 .

This latter equation follows from the following two observations. Firstly, for a
hypothetic k = 0, the error will be independent of ω, since a previous result
revealed that the order of convergence with respect to ω equals k. This causes
c1 to be independent of ω. Secondly, for all integration methods and grid par-
titions used, from least squares extrapolation over nodes with ω small, there
seems to be a value of ω for which the error is constant with respect to k. This
value does not depend on k nor on ω, which causes c2 to be independent of k
and ω. See also 5.4.4. From ε = c1 (c2ω)k, we expect the lines corresponding to
a specific grid partition and integration method to intersect at k = 0. This is
indeed visible in the plot above.

In absolute sense, the results are better for higher k. We notice however,
that the error of the BE method stagnates after a while. This can also been
seen for the CN and RK2 method, albeit that this stagnation occurs from higher

35

k and that this stagnation error is smaller. The value of this stagnation error
seems to be independent of the grid partition: for BE methods this is approx-
imately of the order 10−8. If k is big, the corresponding integration methods
seems to be the bottleneck to form the maximum error. In other words, the
error of the integration part then dominates the error. The errors of the full
integration methods support this. For BE, this number is 10−8, while for CN
it is approximately 10−10, which are the same values as the stagnation errors
for the corresponding hybrid methods. Therefore, we expect that for sufficient
high k, the stagnation error for the RK4 hybrid method is 10−14.

From these observations we conclude that if ω is small, then increasing k
gives better results if ω satisfies c2ω < 1, where c2 is from a general formula for
the maximum error: ε = c1 (c2ω)k. c2ω < 1 is easier satisfied if the subgrid to
which integration is performed is big, since then c2 is rather small. However,
the error of the integration-QS hybrid method is restricted to be at least as
big as the maximum error of the corresponding full integration method (up to
cancellation of errors). To obtain this optimum error, we either choose a large
grid on which integration is performed and set k to a moderate value, or we
choose a large k.

ω ≈ 2

METHOD A B

’Full QS’ [2.0315] [-5.4918]
’I/QS: RK4 2:2:n’ [-8.5245] [3.8507]
’I/QS: RK2 2:2:n’ [-7.1205] [-0.5258]

36

’I/QS: CN 2:2:n’ [-8.1352] [4.4166]
’I/QS: BE 2:2:n’ [-4.0889] [-2.1596]
’I/QS: RK4 2:4:n’ [-6.8732] [3.5215]
’I/QS: RK2 2:4:n’ [-6.9111] [3.2874]
’I/QS: CN 2:4:n’ [-6.7330] [3.7274]
’I/QS: BE 2:4:n’ [-4.3618] [0.4747]
’I/QS: RK4 2:8:n’ [-4.8066] [1.8504]
’I/QS: RK2 2:8:n’ [-4.7857] [1.7347]
’I/QS: CN 2:8:n’ [-4.7831] [1.9867]
’I/QS: BE 2:8:n’ [-4.3399] [1.3762]
’I/QS: RK4 [17 42]’ [-2.5009] [-0.2663]
’I/QS: RK2 [17 42]’ [-2.4909] [-0.3086]
’I/QS: CN [17 42]’ [-2.5014] [-0.2012]
’I/QS: BE [17 42]’ [-2.4692] [-0.2478]
’I/QS: RK4 33’ [-1.1201] [-1.7271]
’I/QS: RK2 33’ [-1.1150] [-1.7467]
’I/QS: CN 33’ [-1.1262] [-1.6905]
’I/QS: BE 33’ [-1.1235] [-1.6957]

Since the previous conclusion holds only for small ω, we investigate the case
for the relatively high ω = 2. Roughly, the same observations are visible, but
some remarks have to be made.

With regard to the previous result, the order of convergence with respect
to k becomes worse for all QS methods. In particular, we see that the full QS
method gives even worse errors for higher k in absolute sense. In the formula for
the maximum error ε = c1 (c2ω)k, c2 is much bigger such that ω must be small in
order to satisfy c2ω < 1. Next we note that the stagnation errors for the hybrid
methods are much higher. In the previous investigation about convergence with
respect to ω can be read why this is holds for increasing ω.

Thus, if ω is quite big, then the QS hybrid methods are less attractive with
regard to lower ω. However, for a sufficient big k and a sufficient large size of
the subgrid to which integration is performed, these methods are still as good as
the corresponding integration methods alone. In combination with an accurate
integration method, hybrid methods can still be attractive.

37

Integration-QS hybrid method with RK4

METHOD A B

’w: 1/8 2:2:n’ [-12.5555] [4.3202]
’w: 1/4 2:2:n’ [-11.5395] [4.3010]
’w: 1/2 2:2:n’ [-10.5137] [4.2543]
’w: 1 2:2:n’ [-9.4938] [4.1436]
’w: 2 2:2:n’ [-8.5245] [3.8507]
’w: 4 2:2:n’ [-7.6368] [3.0481]
’w: 8 2:2:n’ [-6.7967] [1.3630]
’w: 1/8 33’ [-5.5657] [-0.7842]
’w: 1/4 33’ [-4.5508] [-0.8042]
’w: 1/2 33’ [-3.5234] [-0.8536]
’w: 1 33’ [-2.4778] [-0.9869]
’w: 2 33’ [-1.1201] [-1.7271]
’w: 4 33’ [0.7547] [-3.5499]
’w: 8 33’ [NaN] [NaN]

We focus on the RK4 hybrid method for a fine and coarse integration sub-
grid and different values of ω. The ω are such that ω ≈ 2we, hence we consider
ω = 1

8 till ω = 8.

From the plot we see that for ω ≈ 8, the method gives no results for higher
k. Probably, the threshold value for the Newton procedure was the problem.

38

The Newton procedure could not converge up to this threshold value.

Once more, we observe that increasing the size of subgrid 2, or decreasing
ω, results in a better convergence order with respect to ω and in a smaller
maximum error in absolute sense. Also, the formula for the maximum error
ε = c1 (c2ω)k we derived earlier seems to hold here. All families of lines with
the same grid partition seems roughly to coincide in one single point outside
the plot at k ≈ 0. Moreover, c2 seems to be independent of k, as can be verified
from figures 3-5. Focusing on the green lines (subgrid 2: [33]) in the plot above,
we see that for ω ≈ 3, the maximum error becomes constant with respect to k.
This means that c2 ≈ 1/3 for subgrid 2: [33] and RK4 as integration method. c1
is of the order 0.1. In the following figures c1 and c2 are determined for several
grid partitions using an alternative approach, namely we plot ε against ω instead
of k and extrapolate the results from low values of ω to higher ones by means
of a least squares approach. c2 is independent of k (for small ω) if the least
squares lines coincide in one point. For each grid partition, this is indeed the
case (except possibly for higher values of k, in which case instability causes an
irregular course of the graph). The coordinates of the intersection point equals
(ω, ε) = (c−1

2 , c1). We conclude that a finer integration subgrid yields a smaller
c2 and a (slightly) bigger c1.

Figure 3: ε plotted against ω for several k and subgrid 2: 2:2:n. The lines for k small
enough cross each other at ω ≈ 700. We have c2 ≈ 1/700 and c1 ≈ 20.

39

Figure 4: ε plotted against ω for several k and subgrid 2: 2:8:n. The lines for k small
enough cross each other at ω ≈ 45. We have c2 ≈ 1/45 and c1 ≈ 3.

Figure 5: ε plotted against ω for several k and subgrid 2: [33]. The lines for k small
enough cross each other at ω ≈ 5. We have c2 ≈ 1/5 and c1 ≈ 0.5.

Integration-QS hybrid method with CN

40

METHOD A B

’w: 1/8 2:2:n’ [-12.1295] [4.8140]
’w: 1/4 2:2:n’ [-11.1238] [4.8074]
’w: 1/2 2:2:n’ [-10.0990] [4.7614]
’w: 1 2:2:n’ [-9.0845] [4.6613]
’w: 2 2:2:n’ [-8.1352] [4.4166]
’w: 4 2:2:n’ [-7.3062] [3.7655]
’w: 8 2:2:n’ [-6.4897] [2.2532]
’w: 1/8 33’ [-5.5709] [-0.7376]
’w: 1/4 33’ [-4.5559] [-0.7578]
’w: 1/2 33’ [-3.5283] [-0.8082]
’w: 1 33’ [-2.4823] [-0.9446]
’w: 2 33’ [-1.1262] [-1.6905]
’w: 4 33’ [0.7733] [-3.5604]
’w: 8 33’ [NaN] [NaN]

The results for the hybrid method with CN are very similar to the previous
results. For this method too, the lines seems to coincide at k ≈ 0 and the
formula used in the previous result, can be applied to this method as well.
Note that for the the blue lines (subgrid 2: 2:2:n), the maximum error reaches
the stagnation error for high k. Also in this case, for ω ≈ 2 (maybe a little
higher), the error becomes independent of k, which determines c2. Also other
values of c1 and c2 are comparable to the previous result. We observe that
ε = c1 (c2ω)k fits the integration-QS hybrid method very well until now. From
the observations, we saw that a finer integration subgrid gives rise to a (much)
smaller c2, while c1 might become (slightly) bigger. This is important, since for
higher ω, we can still obtain a maximum error which is as good as the separate
integration method by choosing a fine subgrid, which causes c2 to be small, such
that c2 ω < 1. In that case, by choosing k sufficiently big, the error becomes
small enough.

6 Conclusion and discussion

In this thesis, we considered several methods to solve non-linear PDEs such as
the Burgers’ equation. These methods include integration methods, (quasi) sta-
tionary methods (QS methods), integration hybrid methods and integration-QS
hybrid methods. For all these methods, we derived a manner to put equations
into a system which can be solved by a Newton procedure, which is a sequence
of Newton steps. In calculating the state, the Jacobian of the system plays an
important role.

Stability From the stability investigation, it follows that the full QS method is
always stable. The stability of integration-QS hybrid methods can be improved
by choosing a bigger k or a finer subgrid to which integration is performed.

41

A remarkable observation is that the forward Euler hybrid method performs
better than the RK2 and RK4 hybrid method. If we focus on the integration
hybrid methods (implicit-explicit methods), we notice a roughly equal stability
interval. This appeared to be due to the used implementation. Another variant
is possible which is expected to have the same behaviour as the Forward Euler
method.

Convergence with respect to ∆t From the investigation on convergence
with respect to the time step ∆t, we observed no convergence of all (quasi)
stationary (hybrid) methods. This is due to the independence of the first order
derivatives with respect to time of these methods. However, for higher values
of ∆t, the error due to the integration part becomes more and more significant
with regard to the error due to the QS method. Probably, in the cases we
considered, these errors cancel out each other partly, for higher ∆t. For all
∆t where the error due to the QS part dominates, a finer subgrid to which
integration is performed, results in smaller errors in absolute sense. For implicit-
explicit methods, we saw that the order of convergence with respect to ∆t is
determined by the integration method which yields the biggest error in absolute
sense.

Convergence with respect to ω From the investigation on convergence
with respect to ω, we obtained evident results for the order of convergence in
the case of small ω, but when ω is big, we observe smaller maximum errors
than we might expect. Maybe the error has the same magnitude as the solution
itself, and simply cannot become much bigger. However, this flattening was
at least as good visible for methods with very small absolute errors at high ω.
Another explanation is that for high ω, the number of time steps in each period
is very small, and might become a bottleneck to form the maximum error. For
small ω, the order of convergence with respect to ω turns out to be k for all
QS methods. These methods satisfy ε = c1 (c2ω)k, where c1 and c2 depend on
the grid partition and the integration method, but do not depend on ω and k.
In general, a finer subgrid to which integration is performed yields a smaller
c2. A similar result doesn’t hold for integration methods: a better integration
method does not yield always a smaller c2. If there are only few nodes on
which integration is performed, the maximum error is mainly determined by
the QS part. In that case, the error is hardly affected by the integration part.
Furthermore, c1 seems to become slightly bigger for a finer integration subgrid,
but overall ε becomes smaller for a finer integration subgrid. For integration
(hybrid) methods, we see that the order of convergence is equal to m+ 1 where
m is the order of convergence with respect to ∆t of the method which yields the
biggest error. However, it seems that there is some limit for this order, which I
have not investigated so far.

Convergence with respect to k At least, the convergence with respect to k
has been investigated for the QS methods. For the full QS method, the relation

42

between the log of the maximum error and k is linear. For sufficiently small ω,
higher k yield a smaller maximum error, while for higher ω, the results become
worse for increasing k. From ε = c1 (c2ω)k, we know that ω must satisfy c2ω < 1
in order to have improvement for higher k. So in theory, for solutions without
high frequency elements (in its Fourier form), the maximum error becomes small
enough for k sufficiently large. Integration-QS methods show a similar result.
However, the convergence order with respect to k depends not only on ω, but
also on the grid partition and the integration method via c1 and c2. In general,
better integration methods yield a better order of convergence. The same holds
true for a lower ω and a finer subgrid to which integration is performed. In
general, an instance with better order of convergence yields a smaller maximum
error in absolute sense. In the plots we see that all lines coincide at some
point at k ≈ 0 and that most lines don’t cross each other. Another important
observation from these hybrid methods, is the existence of a lower limit of the
maximum error, which is equal to the maximum error of the corresponding
integration method.

Figure 6: Finding the balance between k and the fineness of the subgrid to which in-
tegration is performed in integration-(quasi) stationary hybrid methods. In the region
outside A the error is sufficiently small. B denotes the area where the integration part
determines the (minimum value of the) maximum error. In region C the communica-
tion between processors is a bottleneck, whereas in region D the number of flops per
Newton step per processor forms a bottleneck. The black dot indicates an optimal
value. By increasing ∆t, the region B will move towards A, while A remains roughly
constant. ∆t is optimal if the black dot is also on the boundary of B.

43

General conclusion In short, integration-(quasi) stationary hybrid methods
can be a helpful tool in solving PDEs on a grid which is divided into subgrids
that are linked to one processor each. The main advantage of these methods
with regard to usual methods relies on the ability of parallel computing, while
the accuracy can be as good as the integration method used on one subgrid.
However, the coarser the subgrid to which integration is performed, the bigger
the value of k must be in order to reach the desired accuracy. As is illustrated
in figure 6, a balance between these factors must be made, since a finer subgrid
to which integration is performed requires more communication between pro-
cessors, which is easily a bottleneck in the process (region C), while increasing
k requires a highly increased number of flops in each Newton step for each pro-
cessor (region D). The PDE must have a solution which is sufficiently smooth
in time in order to find values for the above-mentioned parameters that yield
faster computing than usual methods, while the accuracy is the same. Thus,
given some desired value for the accuracy and some integration method, we
perform the following steps: firstly choose an appropriate ∆t for the separate
integration method which we use for the hybrid method too. In the optimal
case we have then that the minimum error caused by the integration part is
equal to maximum allowed error (in figure 6: the boundaries of regions A and B
coincide). Secondly, set up a balance between k and the grid partition such that
the errors made by the two parts are roughly equal and no severe bottleneck
occurs in the two processes of computing time. Then, the set of freely chosen
parameters of this integration-(quasi) stationary method is optimized. Another
type of methods which is also suitable for parallel computing, is the family of
implicit-explicit methods. A disadvantage of this type is that the maximum
error is determined by the worst of the separate integration methods used.

Future research In this thesis, I considered a one-dimensional case. However,
real life processes are more dimensional. A proposal for future investigation is
therefore to study the usefulness of hybrid methods described in this thesis for
parallel computing in 2D or 3D. Also, we made some remarkable observations
which we could not fully explain. Among these is the observation that the order
of convergence with respect to ω for integration hybrid methods equals m + 1
and attains some limit which became visible for the RK4 hybrid method, as
is described above. Also, RK4 and RK2 hybrid methods yield stability values
which are worse than those of the Forward Euler hybrid method, which probably
suggests some error in the method. Can we improve the results by solving a
system in each stage of multistage method, as is described in section 4? Another
question is on the apparent flattening of the maximum error for higher ω. What
happens if ω becomes even bigger? Can integration-(quasi) stationary hybrid
methods still be a helpful tool in calculating a PDE which has a solution with
high frequencies? At least we noted that integration-(quasi) stationary hybrid
methods became unstable for higher k, probably because the tolerance value in
the Newton process was too strict. If we increase this value, do we yield indeed
stable solutions? How does that affect the accuracy of the solutions?

44

7 Appendices

A Linear case

According to another (preliminary) study [1] which makes also use of elimina-
tion, an explicit result is given in the case that β1 = 1, β2 = 0, with forward
Euler as integration method. Furthermore, k is set to 2 and only a linear case is
treated (i.e. B = 0). I would like to show that this outcome is consistent with
the theory described in this thesis. Firstly, a linear case makes life far more
easy. After exactly one Newton step, F(y) becomes zero and the solution is
computed. Since the Jacobian is in this case independent from the state y (and

therefore constant), we can write F(y) = Jy + f̂ , for some f̂ which depends
only on time and the known state yj at time j. In the notation of section 4, we
can set up y = (uT1 , u

T
2 , v

T
1 , v

T
2)T , as well as the Jacobian J and F:

J =


A11 A12 −I 0
A21 A22 0 −I
0 0 A11 A12

0 −I 0 0

 (10)

F =


−v1 +A11u1 +A12u2 + f1(t+ ∆t)
−v2 +A21u1 +A22u2 + f2(t+ ∆t)
A11v1 +A12v2 + f ′1(t+ ∆t)

−u2 + uj2 + ∆tvj2


This yields the following form of f̂ :

f̂(t+ ∆t) =


f1(t+ ∆t)
f2(t+ ∆t)
f ′1(t+ ∆t)

uj2 + ∆tvj2


Since F(y) = Jy + f̂(t+ ∆t) and the solution y must satisfy F(y) = 0, we

simply compute y = −J−1f̂(t+ ∆t) to find it. This is equivalent to the result

obtained from the Newton procedure after the first step: y1 = yj−J−1F(y
j
) =

yj − J−1(Jyj + f̂(t + ∆t)) = −J−1f̂(t + ∆t). The inverse of the Jacobian
assumes the following form:

J−1 =


PA11 PA12 P PQ

0 0 0 −I
A11PA11 − I A11PA12 A11P A11PQ−A12

A21PA11 A21PA12 − I A21P A21PQ−A22


where P = (A2

11 + A12A21)−1 and Q = (A11A12 + A12A22). The second
row of the inverse Jacobian reveals that in each time step, u1,v1 and v2 can be
expressed in terms of u2. We get the following solution for y:

45


u1

u2

v1

v2

 =



−PA11f1 − PA12f2 − Pf ′1 − PQ(uj2 + ∆tvj2)

uj2 + ∆tvj2
−(A11PA11 − I)f1 −A11PA12f2 −A11Pf

′
1 . . .

−(A11PQ−A12)(uj2 + ∆tvj2)
−A21PA11f1 − (A21PA12 − I)f2 −A21Pf

′
1 . . .

−(A21PQ−A22)(uj2 + ∆tvj2)


where all (derivatives of) forced terms fi are evaluated at t+∆t. Now define,

in accordance with the notations used in [1] the following matrices:

B = −A22 +A21A
−1
11 A12

C = I +A21A
−2
11 A12

E = [A21(A−1
11 +A−2

11
d
dt) I]

It can be shown that v2 in the solution for y can be equivalently written as:

v2 = −C−1A21A
−1
11 f1 + C−1f2 − C−1A21A

−2
11 f

′
1 − C−1B(uj2 + ∆tvj2)

which is in more compact form equal to:

v2 = C−1(Ef̃ −Bu2) (11)

where f̃ =

(
f1

f2

)
. We will now show this, where we often make use of

the rule S(TS)−1 = (ST)−1S for some matrix S and invertible matrices ST
and TS. Unfortunately, this assumption is very restricting. In fact, if S is
non-square, then either ST or TS has to be non-invertible.

• A21PA11 = C−1A21A
−1
11 :

A21P = A21(A2
11 + A12A21)−1 = A21(I + A−2

11 A12A21)−1A−2
11 = (I +

A21A
−2
11 A12)−1A21A

−2
11 = C−1A21A

−2
11

• A21PA12 − I = −C−1:
A21PA12 + C−1 = A21A

−2
11 A12C

−1 + C−1 = (A21A
−2
11 A12 + I)C−1 = I

• A21P = C−1A21A
−2
11

• A21PQ−A22 = C−1B:
A21PQ − A22 = A21PA11A12 + A21PA12A22 − A22 = C−1A21A

−1
11 A12 +

(A21PA12 − I)A22 = C−1A21A
−1
11 A12 − C−1A22 = C−1B

Note that (10) is the result obtained from [1]. To verify the other parts of
the solution of y, note that y implies that:

u2 = uj2 + ∆tvj2

46

v1 = A11u1 +A12u2 + f1

v2 = A21u1 +A22u2 + f2

which completes the proof.

In our derivation, we didn’t make use of the boundary conditions. If we
include the boundary conditions, then the Jacobian (9) assumes another form
since there is no −1 in the upper right block of the matrix in the rows cor-
responding to the boundaries. For Dirichlet boundary conditions, this won’t
influence the results, since it is previously defined and is not affected by the
state on other nodes. For Neumann boundary conditions this reasoning doesn’t
hold, however we can eliminate the corresponding row to obtain a Jacobian
of the form (9) with possibly an additional row corresponding to a Dirichlet
boundary condition.

B The code

Several programs have been used, including a lot of controller programs. We
will restrict us to the main programs, all of which have the goal to compute
the solution of some system of ODEs, hereby making use of several methods
described in this paper. The first program, EN, deals with systems of the form
given in section 4 (θ-method). ENRK4 and ENRK2 do the same, but use RK4
and RK2 as standard explicit integration method, respectively.

B.1 EN

The main program is EN, which stands for ’elimination’ and ’non-linear’. The
input parameters are:

n: the number of nodes in the grid
uinit: the initial state.
dt: the time-step which is used for integration methods.
dur: duration of integration.
thres: threshold for the absolute value of the residual in the Newton steps.
ns: the number of subsystems, this is such that the Jacobian is of size ns*n ×
ns*n. Hence, ns = k.
bctype: a 2 × 1 vector with information about the type of boundary condition.
Entries can assume the value 0 for a Dirichlet boundary condition, or a 1 for a
Neumann boundary condition. Here the first entry in this vector represents the
left boundary; the second entry the right one.
bc: a cell with the value of the boundary condition (given as a function han-
dle), and its derivatives (at least ns derivatives of the boundary conditions are
needed).
A: the matrix A of the PDE.
B: the matrix B of the PDE.

47

falg: a cell with the value of the forced term in the PDE (given as a function
handle), and its derivatives (at least ns derivatives of the boundary conditions
are needed).
t0: initial time.
index1: indices of the grid nodes which defines the first subgrid
b1: can assume the value 0 or 1, which stands for use of an integration method
for the first subgrid, or use of a (quasi) stationary assumption for this grid,
respectively. Hence, b1 = β1.
b2: same as b1, for the second subgrid. b2 = β2.
a1: can assume the value 0 or 1, which stands for explicitly or implicitly use of
u1 in the PDE part. Is always set to 1. a1 = α1.
a2: same as a1, for u2. Is always set to 1. a2 = α2.
t1: theta value for the theta method, which is used if an integration method is
used for u1.
t2: same as t1, for u2.

The output parameters are:

Y : the state at time t0 + dur.
stab: can assume the value 0 or 1, which stands for a stable or unstable solution,
respectively.

The most important local variables are:

edl: variable which assumes the value 1 or 0 if for the left boundary, a Dirichlet
condition is used or not, respectively.
enl: variable which assumes the value 1 or 0 if for the left boundary, a Neumann
condition is used or not, respectively.
edr: variable which assumes the value 1 or 0 if for the right boundary, a Dirich-
let condition is used or not, respectively.
enr: variable which assumes the value 1 or 0 if for the right boundary, a Neu-
mann condition is used or not, respectively.
index1r: index1 without boundary points.
index2r: index2 without boundary points.
P : permutation matrix which permutes the grid in such a way that the nodes
which belong to index1 are placed before the other nodes.
Axx,Bxx: block matrices of the decomposition of A and B.
f1r, f2r: cell which contains (the derivatives of) the forced term falg, as func-
tion handles for t, but already evaluated at the known grid points of the two
subgrids.
Ibc1, Ibc2: matrices which can be used for selecting the rows of matrices corre-
sponding to subgrids 1 and 2, respectively.
ddt1, ddt2: same as Ibc1, Ibc2, but multiplied by dt.
f : cell which contains (the derivatives of) the forced term falg, as function
handles for t, but already evaluated at the known grid points of the reduced
grid (without boundary points).

48

uinit: n×k matrix containing the initial state values and their k derivatives. If
only the state is given in uinit as input, while the derivatives are not given (i.e.
uinit is given as n× 1 vector), the derivatives are computed in the program.
y: permuted state, adapted for the Newton steps.
U1, U2: current state evaluated on the first and second subgrid at the end of
each Newton step.
u1o, u2o: old state from the last time step (before each Newton step iteration).
v1o, v2o: old first derivative of the state from the last time step (before each
Newton step iteration).
U1o, U2o: equal to U1 and U2, except for the first column, which contains the
old state. It is only used for U1c and U2c, respectively.
U1c, U2c: for i ∈ {1, 2}, Uic is equal to Ui if ai = 1 and equal to Uio if ai = 0.
As already stated, ai is always taken 1, therefore in all of our cases Uic = Ui.
G1, G2: equivalent of ψj,i,l, without its binomial coefficients.
H12, H21: equivalent of ηj,i,l, without its binomial coefficients.
nvecl, nvecr: auxiliary vector. If Neumann boundary condition is used, then a
1 or -1 are coupled to the corresponding boundary node (left and right, respec-
tively) and their neighbouring nodes.
nvecl, nvecr: auxiliary vector. If Dirichlet boundary condition is used, then a 1
is coupled to the corresponding boundary node (left and right, respectively).
P : permutation matrix which permutes the grid in such a way that the bound-
ary nodes are placed at appropriate places in the matrix.
Jpre: constant part of the Jacobian.
stab: test for stability: if the state doesn’t converge after performing 100 New-
ton steps, the program considers the input data as an unstable combination.
bceval: the values of the boundary conditions evaluated at t.
F : the function in the Newton steps which has to become zero.
J : the Jacobian matrix as in (8), used in the Newton steps.
v1c, v2c: a combination of the first derivative on the old state (at time t) and
the new state (at time t+ dt), determined by θ1 and θ2.

The program consists of the following parts:

• Adjusting to the bc’s: the first and last rows of A and B are eliminated
since these rows correspond to the boundary nodes, for which an equation
is already defined. Also, a permutation matrix P is defined in order to
permute the nodes in such an order that the nodes which belong to index1
are placed before the other nodes.

• Subgrids: A and B are partitioned into 4 blocks as outlined in section 4.
Note that the rows corresponding to boundary nodes are not included,
while the corresponding columns are. Also, falg is adapted for the two
subgrids (without boundary nodes). At least, two diagonal matrices are
defined with dt on the diagonals, except for entries which correspond to
boundary nodes. These entries assumes a zero.

• Computing initial derivatives: The pde, included all derivatives of the

49

forced terms is defined first. Then we distinguish two cases. The ini-
tial condition can be given as input parameter either with or without its
derivatives. In the first case, uinit is a n× k matrix, otherwise it is an n
vector. In each case, the columns of uinit are premultiplied by permuta-
tion matrix P in order to let the entries of uinit correspond to the (nodes
which correspond to the) rows of the reordered matrix A. The result is
the initial state y. Via pde, the derivatives can be determined on the in-
terior nodes. The boundary nodes are determined via the derivatives of
the boundary conditions (which is given in bc). At least, the initial state
(plus its derivatives) on the subgrids are determined.

• Defining some functions and vectors: Some functions which appear in the
Jacobian are defined as function handles. In the Jacobian, the rows which
correspond to a Dirichlet or Neumann boundary condition, contains a ’1’
or a ’-1’ together with a ’1’, respectively. These rows are stored in nvecl,
nvecr, dvecl and dvecr, where d stands for Dirichlet, n for Neumann, l for
left and r for right. The vector becomes zero if the boundary condition
they stand for is not on the corresponding boundary. Hence, if we add the
two vectors corresponding to one boundary, we get the right row in the
Jacobian. Another important permutation matrix is P2. In the Jacobian,
the boundary conditions are placed in the bottom rows. Via P2, all rows
are reordered such that row i correspond to the same node as column i.

• Constructing the constant part of the Jacobian All blocks in the Jacobian
which are independent of the state, are predefined. These blocks includes
A11, A12, A21, A22 and some identity block matrices (multiplied by dt).

• Performing Newton steps: First, the Jacobian is fully defined. Then the
Newton step is performed in row 159. After that, the state on the two
subgrids are updated. At least, F and its norm are computed in order to
verify if the computed state is accurate enough. If the state fails to con-
verge, then after some predefined maximum number of steps, the program
qualifies the current problem to be unstable.

• Evaluating F : F is computed according to what is outlined in section 4.
In an earlier version of this thesis, it was (wrongly) stated that if k = 1,
then θ1 and θ2 must be zero. In the program, this is forced. In the other
cases, v1c and v2c are a combination of the first derivative on the old state
(at time t) and the new state (at time t+ dt), determined by θ1 and θ2.

1 function [Y,stab,J,P2]=EN(n,uinit,dt,dur,thres,ns,bctype,...
2 bc,A,B,falg,t0,index1,b1,b2,a1,a2,t1,t2)
3

4 %Main parameters:
5 h=1/(n-1);
6 x=0:h:1; %grid points.
7 maxit=1e3;

50

8

9 %Adjusting to the bc’s.
10 A([1 n],:)=[]; B([1 n],:)=[];
11 enl=bctype(1);enr=bctype(2);
12 edl=1-enl; edr=1-enr;
13 index2=setdiff(1:n,index1);
14 index1r=setdiff(index1,[1 n]);
15 index2r=setdiff(index2,[1 n]);
16 I=eye(n); P(1:length(index1),1:n)=I(index1,:);
17 P(length(index1)+1:n,1:n)=I(index2,:);
18 nr=n-2; xr=x(2:end-1);
19 Ibc=eye(n);Ibc([1 n],:)=[];
20

21 %Subgrids
22 n1=length(index1); n2=length(index2);
23 n1r=length(index1r);
24 x1r=x(index1r); x2r=x(index2r);
25 A11=A(index1r-1,index1); B11=B(index1r-1,index1);
26 A12=A(index1r-1,index2); B12=B(index1r-1,index2);
27 A21=A(index2r-1,index1); B21=B(index2r-1,index1);
28 A22=A(index2r-1,index2); B22=B(index2r-1,index2);
29 for k=1:ns
30 f1r{k}=@(t) falg{k}(x1r,t);
31 f2r{k}=@(t) falg{k}(x2r,t);
32 end
33 class1=[ismember(1,index1) ismember(n,index1)];
34 class2=[ismember(1,index2) ismember(n,index2)];
35 Ibc1=eye(n1); Ibc2=eye(n2);
36 if class1(1)==1; Ibc1(1,:)=[]; end;
37 if class1(2)==1; Ibc1(end,:)=[]; end;
38 if class2(1)==1; Ibc2(1,:)=[]; end;
39 if class2(2)==1; Ibc2(end,:)=[]; end;
40 if ns>1; ddt1=Ibc1*diag(dt*ones(n1,1)); else ddt1=dt; end
41 if ns>1; ddt2=Ibc2*diag(dt*ones(n2,1)); else ddt2=dt; end
42

43 %Computing initial derivatives:
44 for k=1:ns
45 f{k}=@(t) falg{k}(xr,t);
46 end
47 pde=@(u,t,k) A*u+diag(Ibc*u)*B*u+f{k}(t);
48 if numel(uinit)==n
49 y=P*uinit;
50 for k=1:ns-1
51 uinit(2:n-1,k+1)=pde(uinit(:,k),0,k);
52 uinit(1,k+1)=enl*(uinit(2,k+1)-h*bc{1,k+1}(0))+...
53 edl*bc{1,k+1}(0);

51

54 uinit(n,k+1)=enr*(uinit(n-1,k+1)+...
55 h*bc{2,k+1}(0))+edr*bc{1,k+1}(0);
56 y(k*n+1:(k+1)*n)=P*uinit(:,k+1);
57 end
58 else
59 for k=0:ns-1
60 y(k*n+1:(k+1)*n,1)=P*uinit(:,k+1);
61 end
62 end
63 U1=uinit(index1,:); U2=uinit(index2,:);
64 u1o=U1(:,1); u2o=U2(:,1);
65 if ns>1
66 v1o=U1(:,2); v2o=U2(:,2);
67 else
68 v1o=A11*u1o+A12*u2o+f1r{1}(t0)+...
69 diag(B11*u1o+B12*u2o)*Ibc1*u1o;
70 v2o=A21*u1o+A22*u2o+f2r{1}(t0)+...
71 diag(B21*u1o+B22*u2o)*Ibc2*u2o;
72 end
73 U1o=U1; U1o(:,1)=u1o; U1c=a1*U1+(1-a1)*U1o;
74 U2o=U2; U2o(:,1)=u2o; U2c=a2*U2+(1-a2)*U2o;
75

76 %Defining some functions and vectors:
77 G1=@(u1,u2) diag(B11*u1+B12*u2)*Ibc1+diag(Ibc1*u1)*B11;
78 G2=@(u1,u2) diag(B21*u1+B22*u2)*Ibc2+diag(Ibc2*u2)*B22;
79 H12=@(u1) diag(Ibc1*u1)*B12;
80 H21=@(u2) diag(Ibc2*u2)*B21;
81 nvecl=enl*(P*[1; -1; zeros(n-2,1)])’;
82 nvecr=enr*(P*[zeros(n-2,1); 1; -1])’;
83 dvecl=edl*(P*[-1; zeros(n-1,1)])’;
84 dvecr=edr*(P*[zeros(n-1,1); -1])’;
85 P2pre=eye(n);
86 P2pre=P2pre([end-1 1:n1r end end-1 n1r+1:nr end],:);
87 if class1(1)==1; P2pre(n1+1,:)=[]; else P2pre(1,:)=[]; end
88 if class1(2)==1; P2pre(end,:)=[]; else P2pre(end-n2,:)=[]; end
89 for k=0:ns-1
90 P2(k*n+1:k*n+n,1:n*ns)=[zeros(n,k*n) P2pre zeros(n,(ns-k-1)*n)];
91 end
92

93 %Constructing the constant part of the Jacobian:
94 Jpre=zeros(n*ns);
95 for k=0:ns-1
96 Jpre(k*n+1:k*n+n1r,k*n+1:k*n+n1)=...
97 (k<ns-1||b1==1)*(k>0||a1==1)*A11;
98 Jpre(k*n+1:k*n+n1r,k*n+n1+1:k*n+n)=...
99 (k<ns-1||b1==1)*(k>0||a2==1)*A12;

52

100 Jpre(k*n+n1r+1:k*n+nr,k*n+1:k*n+n1)=...
101 (k<ns-1||b2==1)*(k>0||a1==1)*A21;
102 Jpre(k*n+n1r+1:k*n+nr,k*n+n1+1:k*n+n)=...
103 (k<ns-1||b2==1)*(k>0||a2==1)*A22;
104 if k<ns-1
105 Jpre(k*n+1:k*n+n1r,(k+1)*n+1:(k+1)*n+n1)=-Ibc1;
106 Jpre(k*n+n1r+1:k*n+nr,(k+1)*n+n1+1:(k+2)*n)=-Ibc2;
107 else
108 Jpre(k*n+1:k*n+n1r,1:n1)=...
109 -(b1==0)*Ibc1+b1*Jpre(k*n+1:k*n+n1r,1:n1);
110 if ns>1; Jpre(k*n+1:k*n+n1r,1+n:n1+n)=...
111 (b1==0)*t1*ddt1+b1*Jpre(k*n+1:k*n+n1r,1+n:n1+n); end
112 Jpre(k*n+n1r+1:k*n+nr,n1+1:n)=...
113 (b2==0)*-Ibc2+b2*Jpre(k*n+n1r+1:k*n+nr,n1+1:n);
114 if ns>1; Jpre(k*n+n1r+1:k*n+nr,n1+1+n:2*n)=...
115 (b2==0)*t2*ddt2+b2*Jpre(k*n+n1r+1:k*n+nr,n1+1+n:2*n); end
116 end
117 end
118

119 stab=1;
120 for t=t0+dt:dt:t0+dur
121

122 if stab==0
123 break
124 end
125 bcpre=@(t) cellfun(@(c) c(t),bc);
126 bceval=bcpre(t);
127

128 F=constrF(A11,A12,A21,A22,B11,B12,B21,B22,U1,U2,U1c,U2c,...
129 u1o,u2o,v1o,v2o,Ibc1,Ibc2,ddt1,ddt2,enl,edl,enr,edr,...
130 nvecl,dvecl,nvecr,dvecr,bceval,f1r,f2r,t,h,n,ns,t1,t2,b1,b2);
131

132 teller=0;
133 res=norm(F); %upd 13-10: ipv res=thres;
134

135 %Performing Newton steps:
136 while res>thres && teller<maxit && sum(isnan(res))==0
137 teller=teller+1;
138

139 J=Jpre;
140 for k=1:ns
141 l1=k<ns;
142 for j=1:k
143 l2=j>1;l3=j==k;
144 J((k-1)*n+1:k*n,(j-1)*n+1:j*n)=...
145 J((k-1)*n+1:k*n,(j-1)*n+1:j*n)+...

53

146 [(l1||b1==1)*(l2||a1==1)*nchoosek(k-1,j-1)*...
147 G1(U1c(:,k-j+1),U2c(:,k-j+1)),...
148 (l1||b1==1)*(l2||a2==1)*nchoosek(k-1,j-1)*...
149 H12(U1c(:,k-j+1));
150 (l1||b2==1)*(l2||a1==1)*nchoosek(k-1,j-1)*...
151 H21(U2c(:,k-j+1)),...
152 (l1||b2==1)*(l2||a2==1)*nchoosek(k-1,j-1)*...
153 G2(U1c(:,k-j+1),U2c(:,k-j+1));
154 l3*(nvecl+dvecl);
155 l3*(nvecr+dvecr)];
156 end
157 end
158

159 y=y-sparse(P2*J)\(P2*F);
160

161 for k=0:ns-1
162 U1(1:n1,k+1)=y(k*n+1:k*n+n1);
163 U2(1:n2,k+1)=y(k*n+n1+1:k*n+n);
164 end
165 U1o=U1; U1o(:,1)=u1o; U1c=a1*U1+(1-a1)*U1o;%upd 13-10
166 U2o=U2; U2o(:,1)=u2o; U2c=a2*U2+(1-a2)*U2o;
167

168 F=constrF(A11,A12,A21,A22,B11,B12,B21,B22,U1,U2,U1c,U2c,...
169 u1o,u2o,v1o,v2o,Ibc1,Ibc2,ddt1,ddt2,enl,edl,enr,edr,...
170 nvecl,dvecl,nvecr,dvecr,bceval,f1r,f2r,t,h,n,ns,t1,t2,b1,b2);
171

172 res=norm(F);
173

174 end
175

176 u1o=U1(:,1); u2o=U2(:,1);
177 if ns>1
178 v1o=U1(:,2); v2o=U2(:,2);
179 else
180 v1o=A11*u1o+A12*u2o+f1r{1}(t)+...
181 diag(B11*u1o+B12*u2o)*Ibc1*u1o;
182 v2o=A21*u1o+A22*u2o+f2r{1}(t)+...
183 diag(B21*u1o+B22*u2o)*Ibc2*u2o;
184 end
185

186 if teller>=maxit; stab=0; else stab=1; end
187 end
188

189 Y(index1,1:ns)=U1;
190 Y(index2,1:ns)=U2;
191

54

192 end
193

194 function F=constrF(A11,A12,A21,A22,B11,B12,B21,B22,U1,U2,...
195 U1c,U2c,u1o,u2o,v1o,v2o,Ibc1,Ibc2,ddt1,ddt2,enl,edl,enr,edr,...
196 nvecl,dvecl,nvecr,dvecr,bceval,f1r,f2r,t,h,n,ns,t1,t2,b1,b2)
197

198 if ns>1
199 v1c=t1*U1(:,2)+(1-t1)*v1o;
200 v2c=t2*U2(:,2)+(1-t2)*v2o;
201 else v1c=v1o;v2c=v2o;
202 end
203

204 for k=1:ns
205 if k<ns
206 F((k-1)*n+1:k*n,1)=...
207 [A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t)-Ibc1*U1(:,k+1);
208 A21*U1c(:,k)+A22*U2c(:,k)+f2r{k}(t)-Ibc2*U2(:,k+1);
209 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
210 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
211 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
212 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
213 else
214 F((k-1)*n+1:k*n,1)=...
215 [(b1==1)*(A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t))+...
216 (b1==0)*(Ibc1*u1o+ddt1*v1c-Ibc1*U1(:,1));
217 (b2==1)*(A21*U1c(:,k)+A22*U2c(:,k)+f2r{k}(t))+...
218 (b2==0)*(Ibc2*u2o+ddt2*v2c-Ibc2*U2(:,1));
219 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
220 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
221 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
222 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
223 end
224 for j=1:k
225 F((k-1)*n+1:k*n,1)=F((k-1)*n+1:k*n,1)+...
226 [(k<ns||b1==1)*nchoosek(k-1,j-1)*...
227 (diag(B11*U1c(:,j)+B12*U2c(:,j))*...
228 Ibc1*U1c(:,k-j+1));
229 (k<ns||b2==1)*nchoosek(k-1,j-1)*...
230 (diag(B21*U1c(:,j)+B22*U2c(:,j))*...
231 Ibc2*U2c(:,k-j+1));
232 0;0];
233 end
234 end
235 end

55

B.2 ENRK4

Since the main part of this program is roughly the same as EN (except for the
redundant θ2 and β2 input parameters, which have both been set to zero), we
give only the function F :

1 function F=constrF(A11,A12,A21,A22,B11,B12,B21,B22,U1,U2,...
2 U1c,U2c,u1o,u2o,v1o,v2o,Ibc1,Ibc2,ddt1,ddt2,enl,edl,enr,edr,...
3 nvecl,dvecl,nvecr,dvecr,bceval,f1r,f2r,t,h,n,ns,t1,t2,b1,b2)
4

5 if ns>1
6 v1c=t1*U1(:,2)+(1-t1)*v1o;
7 v2c=t2*U2(:,2)+(1-t2)*v2o;
8 else v1c=v1o;v2c=v2o;
9 end

10

11 %rk4 part:
12 u(index1)=u1o; u(index2)=u2o; u=u’;
13 k1(2:n-1,1)=pde(u,t-dt,1);
14 k1(1)=enl*(k1(2)-h*bc{1,2}(t-dt))+edl*bc{1,2}(t-dt);
15 k1(n)=enr*(k1(n-1)+h*bc{2,2}(t-dt))+edr*bc{2,2}(t-dt);
16 k2(2:n-1,1)=pde(u+.5*dt*k1,t-.5*dt,1);
17 k2(1)=enl*(k2(2)-h*bc{1,2}(t-.5*dt))+edl*bc{1,2}(t-.5*dt);
18 k2(n)=enr*(k2(n-1)+h*bc{2,2}(t-.5*dt))+edr*bc{2,2}(t-.5*dt);
19 k3(2:n-1,1)=pde(u+.5*dt*k2,t-.5*dt,1);
20 k3(1)=enl*(k3(2)-h*bc{1,2}(t-.5*dt))+edl*bc{1,2}(t-.5*dt);
21 k3(n)=enr*(k3(n-1)+h*bc{2,2}(t-.5*dt))+edr*bc{2,2}(t-.5*dt);
22 k4(2:n-1,1)=pde(u+dt*k3,t,1);
23 k4(1)=enl*(k4(2)-h*bc{1,2}(t))+edl*bc{1,2}(t);
24 k4(n)=enr*(k4(n-1)+h*bc{2,2}(t))+edr*bc{2,2}(t);
25 dunew=1/6*dt*(k1+2*k2+2*k3+k4);
26 dunew2=dunew(index2);
27

28 for k=1:ns
29 if k<ns
30 F((k-1)*n+1:k*n,1)=...
31 [A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t)-Ibc1*U1(:,k+1);
32 A21*U1c(:,k)+A22*U2c(:,k)+f2r{k}(t)-Ibc2*U2(:,k+1);
33 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
34 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
35 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
36 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
37 else
38 F((k-1)*n+1:k*n,1)=...
39 [(b1==1)*(A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t))+...
40 (b1==0)*(Ibc1*u1o+ddt1*v1c-Ibc1*U1(:,1));

56

41 Ibc2*(u2o+dunew2-U2(:,1));
42 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
43 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
44 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
45 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
46 end
47 for j=1:k
48 F((k-1)*n+1:k*n,1)=F((k-1)*n+1:k*n,1)+...
49 [(k<ns||b1==1)*nchoosek(k-1,j-1)*...
50 (diag(B11*U1c(:,j)+B12*U2c(:,j))*...
51 Ibc1*U1c(:,k-j+1));
52 (k<ns||b2==1)*nchoosek(k-1,j-1)*...
53 (diag(B21*U1c(:,j)+B22*U2c(:,j))*...
54 Ibc2*U2c(:,k-j+1));
55 0;0];
56 end
57 end
58 end

B.3 ENRK2

Since the main part of this program is roughly the same as EN (except for the
redundant θ2 and β2 input parameters, which have both been set to zero), we
give only the function F :

1 function F=constrF(A11,A12,A21,A22,B11,B12,B21,B22,U1,U2,...
2 U1c,U2c,u1o,u2o,v1o,v2o,Ibc1,Ibc2,ddt1,ddt2,enl,edl,enr,edr,...
3 nvecl,dvecl,nvecr,dvecr,bceval,f1r,f2r,t,h,n,ns,t1,t2,b1,b2)
4

5 if ns>1
6 v1c=t1*U1(:,2)+(1-t1)*v1o;
7 v2c=t2*U2(:,2)+(1-t2)*v2o;
8 else v1c=v1o;v2c=v2o;
9 end

10

11 %rk2 part:
12 u(index1)=u1o; u(index2)=u2o; u=u’;
13 k1(2:n-1,1)=pde(u,t-dt,1);
14 k1(1)=enl*(k1(2)-h*bc{1,2}(t-dt))+edl*bc{1,2}(t-dt);
15 k1(n)=enr*(k1(n-1)+h*bc{2,2}(t-dt))+edr*bc{2,2}(t-dt);
16 k2(2:n-1,1)=pde(u+dt*k1,t,1);
17 k2(1)=enl*(k2(2)-h*bc{1,2}(t))+edl*bc{1,2}(t);
18 k2(n)=enr*(k2(n-1)+h*bc{2,2}(t))+edr*bc{2,2}(t);
19 dunew=1/2*dt*(k1+k2);
20 dunew2=dunew(index2);

57

21

22 for k=1:ns
23 if k<ns
24 F((k-1)*n+1:k*n,1)=...
25 [A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t)-Ibc1*U1(:,k+1);
26 A21*U1c(:,k)+A22*U2c(:,k)+f2r{k}(t)-Ibc2*U2(:,k+1);
27 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
28 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
29 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
30 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
31 else
32 F((k-1)*n+1:k*n,1)=...
33 [(b1==1)*(A11*U1c(:,k)+A12*U2c(:,k)+f1r{k}(t))+...
34 (b1==0)*(Ibc1*u1o+ddt1*v1c-Ibc1*U1(:,1));
35 Ibc2*(u2o+dunew2-U2(:,1));
36 enl*(nvecl*[U1(:,k);U2(:,k)]+bceval(1,k)*h)+...
37 edl*(dvecl*[U1(:,k);U2(:,k)]+bceval(1,k));
38 enr*(nvecr*[U1(:,k);U2(:,k)]+bceval(2,k)*h)+...
39 edr*(dvecr*[U1(:,k);U2(:,k)]+bceval(2,k))];
40 end
41 for j=1:k
42 F((k-1)*n+1:k*n,1)=F((k-1)*n+1:k*n,1)+...
43 [(k<ns||b1==1)*nchoosek(k-1,j-1)*...
44 (diag(B11*U1c(:,j)+B12*U2c(:,j))*...
45 Ibc1*U1c(:,k-j+1));
46 (k<ns||b2==1)*nchoosek(k-1,j-1)*...
47 (diag(B21*U1c(:,j)+B22*U2c(:,j))*...
48 Ibc2*U2c(:,k-j+1));
49 0;0];
50 end
51 end
52 end

8 References

[1] J. Heijnen. Modelordereductie van tijdsonafhankelijke PDV’s, Bacheloron-
derzoek, 2011.
[2] A. Quarteroni, R. Sacco, F. Saleri. Numerical mathematics, Springer, 2007.
[3] F.W. Wubs, E.D. De Goede. An explicit-implicit method for a class of
time-dependent partial differential equations, Applied Numerical Mathematics
9, 1992.
[4] Fred W. Wubs and Jonas Thies. A Robust Two-Level Incomplete Factor-
ization for (Navier)Stokes Saddle Point Matrices, SIAM J. Matrix Anal. and
Appl., 2011

58

