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Abstract

We have constructed four factorizations for four canonical realizations. For construct-
ing these realizations we developed a Maple program. It turns out that the construction
of the factorizations for the observer canonical realization and the observability canonical
realization are rather straightforward. For the controller canonical realization and control-
lability canonical realization it is more difficult to construct the factorization. Although
still possible, we have to use here our knowledge about the observer canonical realization.
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1 Introduction

There are several ways to represent differential equations. There are two which we will use
in this article. First of all

d
el — q
R<dt> w(t) =0, weR

where R(€) = Rg + R + -+ + R,£™ € RPX9[¢], with RP*9[¢] the space of p x ¢ polynomial
matrices in the indeterminate &.
Second we will use the state-space representation

d
ﬁx:Ax—i—Bu

y=Cx+ Du

where x takes values in R™ called the state or state vector, and w is split up into an
input vector u with dimension m < ¢ and an output vector y with dimension p = ¢ — m.
Furthermore A € R™*" B € R™™ (C € RP*"™ and D € RP*™,
By using the first representation we are able to construct different state maps. A state map is
a differential operator X (%), corresponding to the polynomial matrix X (§), which acting on
w produces a state vector x which originates from the equation z = X (%) w. In the paper
called “State maps from integration by parts” by van der Schaft and Rapisarda [2] there is
derived how to construct state maps by using integration by parts. The authors manage to
construct a matrix II which contains almost all the coefficients of the differential equation.
Using factorizations of this matrix we are able to construct states, as well as to construct
minimal states. In the book “Linear Systems® by Kailath [1] four canonical realizations are
shown. From these realizations we are able to derive states.
Are we able to find factorization of a matrix constructed by van der Schaft and Rapisardal|2]
which will lead to the four canonical realizations mentioned by Kailath[1]? Moreover, which
factorization of II belongs to which realization?

In this article we will try to obtain factorizations for the following differential equation
with single input and single output,

v 4+ pa1y™ D 4+ iy + poy = guorw™ D - qru + gou

In Section 2 it will be shown how we obtain a minimal state by using partial integration.
In Section 3, four factorizations of II will be constructed for four canonical realizations. These
will be for a n-th order differential equation with single input and single output. In Section
4 we will summarize and discuss our conclusion. At the end of this work there are two
appendices. Appendix A contains a worked out proof for the integration by parts we use in
Section 2. In Appendix B you will find a Maple program for constructing the four canonical
realizations in Section 3.



2 State Maps

In this section we will summarize the results of the paper “State maps from integration by
parts” by A.J. van der Schaft and P. Rapisarda[2]. One of the main results of this paper is
obtaining a minimal state by using integration by parts. A sketch of this procedure is given
below.

First of all we have a differential equation in the following form

d
R <dt> w(t) =0, weRY
where R(§) = Rg + Ri1€1 + -+ + R,&™ € RPXI[¢], with RP*4[¢] the space of p x ¢ polynomial
matrices in the indeterminate &.

For example, if we have the differential equation y™ + p,_ 1y + ... + pry® 4+ poy =
gn1u™ Y 4+ 4 qruD + gou then

T T T T N7
() e () (3 (52 e )
—qo —q1 —qo —Qn—1 0

Y .
and w = " ,WlthfZ%.

For this differential equation we want to compute a state-space representation,

d
@az:Ax—i-Bu

y=Cx+ Du

With z € R”, and w € R? is split up into an input vector u with dimension m < ¢ and an
output vector y with dimension p = ¢ — m. Furthermore A € R*"*", B € R"*™, (C € RP*"
and D € RX™. We call z the state of the system.

It follows that state maps for the system given above can be computed from a factorization
of a two-variable polynomial matrix I1({, n), which has a coefficient matrix II that consists of
the coefficients of the differential equation. We are able to construct II in two ways. For the
first way we start with the following;:

Take any n-times differentiable functions w : R — R? and ¢ : R — R?. For each time instant
t1 <ty integration by part yields

to d to d
[Tornr (-5 ) etwa= [ emonr () war+ Baew I,
t dt ” dt
where Br(p,w)(t) “the remainder is in the following form:

w(t)
w(l)(t)

Br(p,w)(t) = ("(t) oWT(@t) - o) )1 1
w(nfl)(t)



In this equation ¢*) = C‘l%cp and w®) .= jt—zw, for some constant infinite matrix II.

In fact, the remainder only depends on ¢, w and their time derivatives up to the order n — 1.
A proof is shown in appendix A.

II turns out to be the following matrix:

—Ry —Ry o —Rpo1 —Ry,

Ry Rs .+ R, 0

= (-)" 'R,y (-1)"'R, 0 .- 0
(=1)"R,, 0 0 - 0

Because only a finite part of II contains nonzero elements, we only take this part into account
and we end up with:

—Ry —Ry o+ —Rp1 —Ry
Ry Rs R, 0
I = : : S
(—1)" 'Ry (~1)* 'R, 0 - 0
(=1)"R,, 0 0o . 0

Now if take a look at the example in the beginning of this section II turns out to be the
following matrix:

—p1 ¢ —P2 @ -+ 0 —Pn-1 gn-1 —1 0
D2 —q2 D3 —q3 e e 1 0O 0 0
I = '
D" 'ppr —(=1)"lgpa (=P 00 0O e e 000
(—1)m 0 0 0 0 0 - - 0 0

Although van der Schaft and Rapisarda do also construct the matrix II in a more complicated
manner, the method described above turns out to be sufficient within the contents of this work.
There are several ways to factorize of II. In the following way:

n=v"X

We know that II is the coefficient matrix of II(¢,n) = Y7 (¢)X (1), where
Iy

YT(C) = ( Iy IC Ip<2 Ipcn_l )Y~T and X () = X Lqn

Now we use Theorem 2.6 [2]



Theorem 2.1. For any factorization 11((,n) = Y ()T X () the map

d
w>—>z.—X<dt)w

If the factorization is minimal then the state map is a minimal state map. There are several
factorization with this property, but in this work we will concentrate on the construction of
minimal states for the four special canonical realizations mentioned in Kailath’s work [1], they
are mentioned below.

1s a state map.

1 observer canonical realization
2 observability canonical realization
3 controller canonical realization

4 controllability canonical realization



3 Canonical Realizations

The textbook “Linear Systems” by Thomas Kailath [1] mentions the following canonical
realizations:

1 observer canonical realization
2 observability canonical realization
3 controller canonical realization

4 controllability canonical realization

In this section we will try to obtain the factorizations of II that correspond to these
realizations. Each subsection will start with a figure of the corresponding system. All of the
systems are, for reasons of exposition, based on the third order differential equation:

v +pay® + pry™ + poy = gu® + gt + gou

The factorizations are for all differential equations of the following form,

v 4+ a1y 4 oy 4 poy = g™ 4+ qru) + gou

First we have to construct the minimal state for each of these systems. To construct the
minimal states for the observer canonical form and observability canonical form we can use
the figures. The controller canonical form and the controllability canonical form do however
require a little more work. Thereafter we have to find for each realization the factorization of
II. In Subsection 1 we will start with the observer canonical realization. Then in Subsection 2
the observability canonical realization will be discussed. In Subsection 3 we have to use what
we know from the observer canonical realization to compute the factorization for the controller
canonical realization. In Subsection 4 we also need the observer canonical realization for the
controllability canonical realization.



3.1 Observer canonical realization

Figure 1: Observer Canonical Form

q0 q1 a2

Y
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In this section we are going to construct the factorization of II for the observer canonical
realization. In Figure 1 the system of the observer canonical form is shown. We use this
figure to calculate the minimal state. Therefore we have to start at the end of the system. If
we read back we can see that z1 = y. To calculate x5 we have to differentiate x1, add psy
and subtract gou. To calculate x3 we have to differentiate xo, add p1y and subtract giu.
This approach can also be used for n-th order differential equations. In that case we again
have 1 = y, and x, = %5%—1 + Pnt+1-kY — Gn+1-xu for k = 2,... n. This leads to the
following minimal state

X1 )
Ty vy 4 pp 1y — gnru
RERE ¥ + 91y — 1w + oy — g2
Lo= 1 zy | = v 4po1y® —gu1u® 4 proy™ — gnou® 4 py_3y — gu_3u
Tn Y 4 Py = g u® - pay ™ — goul) - pry — qru

Now we are going to construct the n x 2n matrix X'O such that X’OW = z,. Where the vector
W consists of output function y and input function » and its derivatives up to and including
the (n — 1)-th derivative. In each row we look at how many times each of the elements of W
appear in the minimal state. It turns out that,



1 0 0 0 0 0 0 0

Yy T
Pn—1 —Qn-1 1 0 0 0 0 0 u X9
Pn—2 —Aqn—-2 Pn—-1 —Qn-1 1 0 0 O y(l) T3
: : : . u(l) _ Ty
p2 —q@ ps  —q - 1 0O 0 0 yin’g Tn-1
e
D1 —q D2 —q2 " Pn-1 —qu-1 1 0 u Tn
In fact X, looks like II. Especially
R, 0 0 0
R,.1 R, O 0
XO = : .. .. .
Ry Rs3 --- R, 0
R Ry --- Rp1 R,

The k-th row of X:O is the same as the (n + 1 — k)-th row ofoI. With this knowledge we are
able to construct Y.l Knowing that Y,/ X = IT must hold. Y is a matrix that interchanges
the rows of X and multiplies them with —1 if necessary.

So,
0 0 0 (-1
0 0 (-1)% o
YT = . :
0 (-n~t o 0
—1n 0 0 0



3.2 Observability canonical realization

Figure 2: Observability Canonical Form
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In this section we are going to construct the factorization of II for the observability canon-
ical realization. Figure 2 shows the system of the observer canonical form. In this system, the
new parameters (5; are introduced. These parameters are constructed in the following way,

-1

B1 1 0 0 0 0 In—1

ﬂ? Pn—1 1 0 0 0 dn—2

53 Pn—2 DPn-—1 1 0 0 dn—3
= . |=|"." . . :
Bn—1 p2 p3s o pp1 10 q2
Bn D1 P2t Pp—2 Pn-1 1 T

Now we can use Figure 2 to calculate the minimal state. To do this we start at the end of the
system. Reading back we see that x1 = y. To calculate x5 we differentiate x1 and subtract
Biu. To calculate 3 we differentiate zo and subtract Sou.

We are also able to do this for n-th order differential equations. We again have x; = y, and
T = %%—1 — Br_1u for Kk =2,...,n. This leads to the following minimal state:

10



o y» — Bru
x3 y? — Bru) — Byu
Toa = | x4 |~ y® — Bru® — Bou® — Byu
Tn y= — B — Bou=3) — L — B, suM — B, u

We will construct the n x 2n matrix Xoa such that X’OQW = Z,q. Here the vector W consists
of the output y and input u and its derivatives up to and including to the (n—1)-th derivative.
In each row we look at how many times each of the elements of W appear in the minimal
state. We find the following

1 0 0 0 0O 0 -~ 0 0 Y z1
0 —-p 1 0 0O 0 -~ 0 0 u )
(1) "
0 —B 0 B 1 0 -~ 0 0 Yy 3
. . . . o u || a2y
: : : : : - - .o y(”'*l) Ty 1
0 _Bn—l 0 _/Bn—2 T 0 _Bl 1 0 u(n—l) Tn
So,
1 0 0 0 0 0 0 0
0 —p 1 0 0 0 0 0
0 0

0 —fBp-1 0 —Bp—2 -~ 0 =B 1 0

We must have that ?OEXOG = II. Because of the placements of the 1’s in Xoa we must have
that the first column of YL is the same as the first column of II, the second column of Y% is
the same as the third column of II. Especially, the k-th column of Y,L must be the same as
the (2k — 1)-th column of II. So now Y. should look as follows:

—D1 —p2 vt —Pn-2 —DPn-1 1

D2 D3 o Pn-l 1 0

}707; _ : : . . :
(_1)n_2pn72 (_1)n_2pn71 1 0 0

(=1)" 'y 1 0 0 0

1 0 0 0 0

We did not need use the 3;’s in to calculate Y,L. But if we compute Y,- X,, it turns out
that this is equal to II.

11



3.3 Controller canonical realization

Figure 3: Controller Canonical Form

> 2

-po -t

In this section we will construct the factorization of II for the controller canonical realiza-
tion. In Figure 3 the system of the controller canonical form is shown. One can imagine how
such a figure would look like for a n-th order differential equation. If we now try to construct
the minimal state by reading back we get the following:

X1 (?/ —q0Tn — q1Tn—1 — 2Tp—2 — *** — qpn—-3T3 — qn—2$2)/qn—1
1) (y —qoTn — q1Tp—1 — q2Tp—2 — *** — p—3T3 — Qn—1$1)/Qn—2
x3 (?/ —q0Tn — q1Tn—1 — 42Tp—2 — *** — qn—-2T2 — qn—lwl)/qn—s
Le = = .
Tn—1 (l/ —q0Tn — q2Tn—2 — q3Tp—-3 — *°* — n—2T2 — anll‘l)/(h
Tp (Y — Q1%Tn—1 — @2Tn—2 — @3Tp—3 — =+ — ¢n—2T2 — ¢n—121)/qo

Each element of x. depends on all the other elements of z.. But we want to have a statement
for each element in a way that it does not depend on the other elements.

The first thing I tried was to use the A., b. and ¢, which belong to the controller form of a
system in state-space representation . Which is the following

d
Z(t) = Acr(t) + beu(t)

y(t) = cex(t).

12



Where,

—Pn—1 —Pn-2 —DPn-3 —p1 —Po 1
1 0 0 0 0 0
0 1 0 0 0 0
Ac = . abc = 5
0 0 1 0 0 0
0 0 0 1 0 0
ce=(Gn-1 G2 -3 - @ Q).

We now use the fact that there exists a invertible square polynomial matrix U(s) such that

SIan_Ac On><1 _bc _ Ian anl anl
U(S)< —c 1 0)‘(0 k l)

Once we have U(s), we are able to construct the minimal state in the following way:

z. = Fy+ Gu.

First we should attempt to calculate U(s). U(s) has the following property:

o) () = (o)

If we look at the special case where 42 +p1y® +poy = g1uV) +gou is the differential equation
then we are able to construct the third row of U(s). However calculating the other rows does
not lead to a conclusive answer. For the next approach we use what we already know from
the observer canonical realization. By using both the observer canonical realization and the
controller canonical realization, we can calculate a matrix which transforms the observer
canonical form into the controller canonical form. Because both the realizations are minimal,
there must exist a matrix P from one realization to the other. Both systems are of the
following form:

d
@x(t) = Az(t) + bu(t)

y(t) = calt).

Now take A., b. and ¢, to be the matrices for the controller system and we choose A,, b, and
¢, for the observer system. From [3] we know P,. can be calculated in the following way:

P, =C.CT(C,Cc.T)

Where

13



C = (b Ab A%b A% - A% A”_lb) .
P, has the following property:

Ac = PocAoPocily Bc = PocBm Cc = C'oPocila

Te = FocZo-

Calculating the matrix from the controller system to the observer system acquires less work
so. Because of the quantities of P,. we have that P,, = P.,~'. Once we have calculated P,
we take the inverse of this to get the matrix we need. For a third order differential equation
we have the following;:

P1g9o — Poq1 P2go0 — Poq2 q0
Peo = | p2go —poq2  qo +p2q1 — P12 q1
qo q1 q2

We know that Py, = P.,~! so we can construct P,.. Now we are able to construct the minimal
state for the controller canonical realization. We have

Le = Poc$07
where .
To = X, W.
So )
Te = Py X W.
Furthermore we know that )
T = X.W.

This leads to the following:

And finally:



We now have our X, and we need to find Y/CT. We know that ?OTXO = II so we must have the
following:

}‘;;)TPCOPOCXO = ?OTPCOXC = 1:[
Furthermore we know that Y,/ X, = II. Therefore:

i/cT = f/oTP co

We now have the factorization of II.

15



3.4 Controllability canonical realization

Figure 4: Controllability Canonical Form

—> B1

B2

X1 X2 xB

P

In this section we will construct the factorization of II for the controllability canonical
realization. In Figure 4 the system of the controller canonical form is shown. Again one can
imagine how such a figure would look like for a n-th order differential equation. Just as for
the controller canonical realization, we cannot simply read back from the figure, because then
we have:

1 (y — Pawy — Baxz — fata — -+ — Pn_1Zn—1 — BnTn) /b1
T2 (y — P11 — Baxs — Pats — -+ — Pn_1Tpn—1 — BnTn) /b1
T3 (y — Bix1 — Boxa — Baws — -+ — Bn_1Tp—1 — 5n9€n)//31
Loa = . = .
xn.—l (y = Brwy — Poxg — P33 — . Brn—2%Tn—2 — Bnn)/Bn-2
Tn (y — Brx1 — Baxg — Baxg — -+ — Bp—2Tn—2 — Bu_1Tn-1)/b1

Again all the elements of x,, depend on all the others. Therefore we have to try another
way to construct the state. As we already now from the controller realization, we will try to
construct a transformation matrix P which from a known system (in this case the observer
canonical form) to this system (the controllability canonical form. For the controllability

16



realization we have the following matrices

0 O 0 0 —Po 1
1 0 0 0 —D1 0
0 1 0O -+ 0 —po 0
Aca = T . .. . . ybea = . acca:(ﬂl B2 B3 -+ Pna ﬂn)
0 O 1 0 —pp_2o 0
0 O 0 1 —pup_1 0

We use the controllability matrices of both systems to calculate P, in the same way as in
Subsection 3.3. It turns out that it is less work to calculate P,,, and then take the inverse of
P..o to get P,.,. For a third order differential equation we get

@ —p2gat+q1 qepe’ — pig2 — p2q1 + Qo

Pwo= |1 —p1@2+q  @p2p1 —Pog2 — P11
qo —Pog2 P2P0q2 — Poq1

Because we know that P,y = Peo - we are able to calculate Poe,. Having this, we are able
to calculate the minimal state for the controllaﬁbility realization. We haye, Tea = PoeaTo-
Because we know that x, = X, W, so . = P, X,W. Furthermore x., = X.,,W so we have

PocaXoW = XcaW

From this it follows that:

So we have X., and we need to find ¥,£. We know that Y,/ X, = II so the following must
hold:

Y/'OTPcaoPocaXO - Y/OTPCQOXCO, - ﬁ
Furthermore we know that Y.L X, = II. So:

YQE = ?OTPCM‘

This leads to the factorization of lf[ We know that XO has full rank and P,., is an invertible
matrix, therefore it follows that X, has full rank as well. So the state map that belongs to
the controllability canonical realization is minimal.

17



4 Conclusion

In this paper we were able to construct factorizations of the coefficient matrix for four canon-
ical realizations for a n-th order differential equation with single input and single output. It
turns out that for the observer canonical realization and the observability canonical realiza-
tion these factorizations are easy to construct by first constructing the state vector. For the
controller canonical realization and the controllability canonical realization we cannot use the
states constructed in this way. To calculate those factorization we have to use the factor-
izations which were constructed for the observer. Also we managed to develop a program in
Maple so that for these differential equations all the factorizations will be calculated.

Now it is of course interesting to know whether there are ’canonical’ factorizations for a
multiple input and multiple output system. There probably are several interesting factoriza-
tions, however these are beyond the scope of this paper and are left for future work.

18
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A Integration

In this appendix we are going to give a proof of the following statement:

/: T(t)R" ( jt) p(t)dt = /: e (R <;i> w(t)dt + Bri(p, w) |12

Which we used in section 2 about state maps.
1 _\n
First because, R(72) = (7ddt) 4+ Ry EL we have that

)
/ TR (-5, ) elo
r—d

= [T @RS ewd+ [T R 0

t1 t1

+/t2 wT(t)RQT(_d)ng(t)dtJr---+/t2 ()RT( d)nap(t)dt.

" dt? " " dgn

If we use for each term integral integration by parts, we get

/ N wl (t)RE p(t)dt
t1 N
_ /t (wT (t)RE (1)) " dt
= /;2 o (t)Row(t)dt,
| T ORT et
_ _/thT(t)RITCZ¢(t)dt

—— (W ORtetol: - [ G O e

=R + [ e OR ),

t1

ZwT(t)RTiSO(t) . /t‘z y w ()R — d o(t)dt
2 dt ty dt 2 ¥

_ (dtso (OR0) ~ ¢ O R ) 2+ [ O,

t1

20

dt?

)

ta g2
1 otolt - (G ORFetol: - [ G 0me(oar)

2
d w(t)dt,



:_< YO el - [ o OR foeoar)

- R <>t2+(jt O o0l - [ OR
= W OB 0 + ST OB Loz - LT olt)
b [ OR e

=<$290T(t)R3w(t) " (1) Ry () J(t)st;w@)) 5

We can see an algorithm for the integration by parts for higher derivatives,

/ (1)

r(=d)"
A dtn

p(t)dt

n—1 n—1
= (T ORE el [ ST RS

" dgn—1
n—1

. d . d
= (~1)"w” (ORE S+ (<) ST (R S 0)

) to d2 T den—2
-1 — )R t)dt
(1 [ S R el

1

n—1
= ()T ORE S e+ (1) ST RS ()

o d® rd" 3 t
(1 T RS o)

to dS T dn— 3
gggUJ ajlizdtn 3¢% )d

+7(71)n—3
t1
dn— 1 1 dn72 T d

= (-1 Lw(t) 4+ (=1 )Ry —w(t

(—1)" ST O Raw(t) + (—1)" 2 o () R (8
dn—l

DRI — T t2
to dr

+/ cpT(t)Rn%w(t)dt.

t1
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Then by adding all these integrals we get:

[ (£) o
d2

to to d to

:/ <pT(t)R0w(t)dt+/ TRy — (t)dt+/ goT(t)Rg—Qw(t)dt

t t dt t dt
n—1 n

to d to d
+---+/ ‘PT(t)Rnldtn_lw(t)dt"i‘/ sOT(t)Rn%w(t)dHBn(% w) |2

t1 t1

= [F o () witrit+ Batew) [

t1

If we look closely at all remainder terms, we can derive the following:

Bri(ip,w) = =" (t) (Ruw(t) + Row ™ (1) + -+ + Rpoquw™ (1) + Ry (1))
+oMT () (ng(t) + RywW () + - + Rpqw™ 3 () + Ryw™ )
+ =T () (ng(t) + Rw V() + - + Rp_qw™ () + Rpw ™™ (t))
P
+ (1) DT () (Ryyw(t) + Raw ™ (1)
+ (= 1) VT () Ryw ().

Furthermore we can see that

w(t)
w(t)
Bu(p,w)(t) = (¢T(t) oWT(t) -+ V(). )10 :
w(nfl)(t)
Where:
—R; —Rs —-R,_1 —R,
Ry R3 R, 0
Py R (R, 0 0
(—=1)" Ry, 0 0 0
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B Maple Program

1

2 #In this program, four canonical factorizations of Pl—tilde will be calculated,
Pl—tilde is the coefficient matrix of the following N-th order differential
equation ,

3 #p0(y)+pl(dy/dt)+p2(dy/dt) "2+...+pN—1(dy/dt) "(N—1)+1(dy/dt) "(N)=q0 (u)+ql (du/dt)
+q2(du/dt) "2+...4+qN—1(du/dt) "(N—1)+0(dy/dt) "(N). Under the heading input one
should give the coefficients of the differential equation. Under the
heading calculations , the calculations are done. Under the heading output
one can choose what output you want to see.

4
5 #Restart & Packages:
6 restart;

7 with(LinearAlgebra):
s with(linalg):

9 with(VectorCalculus):

11 #lnput:

12 #Here the differential equation has to be submitted

13

14 #P is a row—verctor with the coefficients of the output of the differential
equation ,

15 #furthermore: p0(y)+pl(dy/dt)+p2(dy/dt) "2+...+pN—1(dy/dt) " (N-1)+1(dy/dt) "(N)

16

17 #Q) is a row—vector with the coeeficients of the input of the differential
equation ,

18 #furthermore: q0(u)+ql(du/dt)+q2(du/dt) "2+...+qN—1(du/dt) " (N—1)+0(dy/dt) "(N)

19 P:=Matrix ([p0, pl, p2, p3, 1]):

20 Q:=Matrix ([q0, ql, q2, g3, 0]):

21

22

23

24 #Calculations :

25 #In here the you calculations are done,

26 #some of the calculation will take time and you might not meed the outcome.

27 #Those calculation belong in the heading: permutation matrices.

28 #PI-Tilde

20 #N is the order of the differential equation ,

30 #Pi—Tilde 1is the coefficient matrics:

31 N:=Dimension (P) [2] —1:

32 PIT:=Matrix (N,2xN, fi1l=0):

33 for w from 1 by 1 to N do

34 for k from w by 1 to N do

35 PIT [w,2x (k—w) +1]:=subs (PIT [w,2xk—1]=((—1) "w)*P[1 ,k+1] ,PIT [w,2xk —1])
36 od:

37 od:

38 for v from 1 by 1 to N do

39 for j from v by 1 to N do

40 PIT[v,2x%(j—v)+2]:=subs (PIT[v,2xj]=((—1) " (v—=1))«Q[1,j+1],PIT[v,2xj])
41 od:

42 od:

43 Pi_tilde:=PIT:

aa wi="w': ki="k’: vi='v’: j:="]":

45
46
a7 #Canonical Factorization (Observer):
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18 #The factorization of the coefficient matrics for the obeserver realization :
19 XTO:=Matrix (N,2xN, fill =0):

50 for w from 1 by 1 to N do

for k from 1 by 1 to 2xN do

XTO[w, k]:=subs (XTO[w,k]=((—1) " (N+1-w) ) *PIT [N+-1-w, k] ,XTO[w, k])

od:

X _tilde_observer:=XTO:
6 YIO:=Matrix (N,N, fill =0):
57 for v from 1 by 1 to N do
58 YTO[v ,N+1—v]:=subs (YIO[v ,N+1-v]=(—1) " (N-v) ,YIO[v ,N4+1-v])
59 od:
60 Y_tilde_observer:=YTO:
61 w:="w’: k:="k’: v:i="v’:
62 BETA:
63 #Beta, which we use for the obeservability and controllability realization :
64 PM:=Matrix (N,N, fill =0):
65 for w from 1 by 1 to N do

1
2
3 od:
1
5

66 PM[w,w]:=subs (PM[w,w]=1 PM[w,w])

67 od:

68 for v from 1 by 1 to N-1 do

69 for j from 1 by 1 to v do

70 PM[v+1,j]:=subs (PM[v+1,j]=P[1 ,N—v+j ] ,PM[v+1,j])
71 od:

72 od:

mowi="w': v:i="v’: j:="j":

72 INVPM:=inverse (PM) :

75 QME=Matrix (N,1, fill=0):

76 for w from 1 by 1 to N do

7 QM[w,1]:=subs (WM[w,1]=Q[1 ,N+1-w] ,QM[w,1])
78 od:

79 wi="w’:

30 BETA:=INVPM.QM:

81 #Canonical Factorization (Observability):

82 #The factorization for the observabilty realizaton:
83 XTOB:=Matrix (N,2xN, fil1=0):

84 for w from 1 by 1 to N do

85 XTOB[w,2+*w—1]:=subs (XTOB[w,2*w—1]=1,XTOB[w,2xw—1])

86 od:

87 for v from 2 by 1 to N do

88 for j from 1 by 1 to v—1 do

89 XTOB[v,2%j]:=subs (XTOB[v,2* j]=(—1)*«BETA[v—j ,1] ,XTOB[v,2%j])
90 od:

91 od:

92 X _tilde_observability :=XTOB:
93 wi="w’: j:="j": vi=v’:

94 YTOB:=Matrix (N,N, fill =0):

95 for w from 1 by 1 to N do

96 YTOB[w,N+1—w]:=subs (YTOB[w,N+1-w|=(—1) " (N-w) ,YTOB[w,N+1-w])
97 od:

98 for v from 1 by 1 to N do

99 for j from 1 by 1 to N-v do

100 YTOB|[v, j]:=subs (YIOB[v, j]=((—1)"v)*P[1,v+]] ,YIOB[v,]])
101 od:

102 od:

03 wi="w’: v:='v’: j:=7j":

104 Y_tilde_observability:=YTOB:
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105

106 #Canonical Realizations
107 #The matrices for the first oderer system of the four canonical realizations:
108 AO:=Matrix (N,N, fill=0):

109 for w from 1 by 1 to N-1 do

110 AO[w,w+1]:=subs (AO[w,w+1]=1,A0[w,w+1])

111 od:

112 for v from 1 by 1 to N do

113 AO[v,1]:=subs(AO[v,1]=—P[1 ,N+1-v] ,AO[v,1])
114 od:

115 A_observer:=AO:

116 BO:=Matrix (N,1, fill=0):

117 for j from 1 by 1 to N do

118 BO[j,1]:=Q[1 ,N+1—j]

119 od:

120 B_observer:=BO:

121 CO:=Matrix (1,N, fill=0):

122 CO[1,1]:=subs(CO[1,1]=1,CO[1,1]):

123 C_observer:=CO:

124 A_controller:=transpose (A _observer):
125 B_controller:=transpose(C_observer):
126 C_controller:=transpose (B_observer):
27 wi="w’: vi="v’: j:="j":

128 AOB:=Matrix (N,N, fill=0):

129 for w from 1 by 1 to N-1 do

130 AOB[w,w+1]:=subs (AOB[w,w+1]=1,A0B[w,w+1])
131 od:

132 for v from 1 by 1 to N do

133 AOB[N, v]:=subs (AOB[N, v]=—P[1,v] ,AOB[N,v])
134 od:

135 A_observability :=AOB:

136 BOB:=Matrix (N,1, fill =0):

137 for j from 1 by 1 to N do

138 BOB[j,1]:=BETA[j ,1]

139 od:

140 B_observability:=BOB:

141 COB:=Matrix (1,N, fill=0):

142 COB[1,1]:=subs (COB[1,1]=1,COB[1,1]) :

143 C_observability:=COB:

144 A_controllability:=transpose ( A_observability):
145 B_controllability:=transpose (C_observability):
146 C_controllability:=transpose(B_observability):
a7 we="w’': v:i='v’: j:="j":

148 #Controllability Matrices

149 #The controllability matrices of the four canonical realizations:
150 CMC:=eval (B_controller):

151 for w from 1 by 1 to (N-1) do

152 L:=evalm (evalm ((eval (A_controller)) "w).eval(B_controller));
153 CMC:=simplify (Matrix ([CMC,L]) )
154 od:

155 Controller_Matrix_Controller:=CMC:

156 w:="w’: L:="L":

157 CMOO:=eval (B_controllability):

158 for w from 1 by 1 to (N-1) do

159 L:=evalm (evalm ((eval (A_controllability)) w).eval(B_controllability));
160 CMCO:=simplify (Matrix ([CMCO,L]) )

161 od:
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162 Controller_Matrix_Controllability :=CMQO:
163 w:="w’: L:="L":

162 CMO:=eval (B_observer):

165 for w from 1 by 1 to (N-—1) do

166 L:=evalm (evalm ((eval (A_observer)) w).eval (B_observer)):
167 CMO:=simplify (Matrix ([CMO,L]) )
168 od:

169 Controller _Matrix_Observer:=CMO:
170 w:="w’: L:="L":

171 CMOB:=eval (B_observability):

172 for w from 1 by 1 to (N-1) do

173 L:=evalm (evalm ((eval (A_observability)) "w).eval (B_observability)):
174 CMOB:=simplify (Matrix ([CMOB,L]) )
175 od:

176 Controller _Matrix_Observability:=CMOB:

177 wi="w’: L:="L":

178

179 #Transformation Matrices

180 #The transformation matrices from in the form ”P_from_to”

181 #In here the calculations after the "#” signs might be interresting but not
needed for further calcultions ,

182 #If you want the calculations o be done, you should remove the "#” signs.

183 Pe_.C_O:=simplify (CMO. ( transpose (CMC) ) . MatrixInverse (CMC. transpose (CMC) ) ) :

182 Pe_O_C:=MatrixInverse (Pe.C_O):

185 #Pe_O_-OB:=simplify (CMOB. (transpose (CMO) ). MatrizInverse (CMO. transpose (CMO) ) ) :

186 #Pe_OB_O:=MatrizInverse (Pe_O.OB) :

187 #Pe_CO_O:=simplify (CMO. (transpose (CMCO) ). MatrizInverse (CMCO. transpose (CMCO) ) ) :

188 #Pe_O_-CO:=MatrizInverse (Pe.CO.-0) :

189 #Pe_C_OB:=simplify (CMOB. (transpose (CMC) ). MatrizInverse (CMC. transpose (CMC) ) ) :

190 #Pe_OB_C:=MatrizInverse (Pe_.C_OB) :

191 #Pe_CO_C:=simplify (CMC. (transpose (CMCO) ). MatrizInverse (CMCO. transpose (CMCO) ) ) :

192 #Pe_C_CO:=MatrizInverse (Pe_.CO_C) :

103 Pe_.CO_OB:=simplify (CMOB. ( transpose (CMCO) ) . MatrixInverse (CMCO. transpose (CMCO) ) ) :

194 Pe.OB_.CO:=MatrixInverse (Pe_.CO_OB) :

195 #Canonical Factrorization (Controller):

196 #The factorization of the coefficient matrics for the controller realization :

197 X_tilde_controller:=simplify (Pe_.O_C. X _tilde_observer):

198 Y_tilde_controller:=simplify (Y_tilde_observer.Pe_.C.O):

199 #Canonical Factorization (Controllability):

200 #The factorization of the coefficient matrics for the controllability
realization :

200 X_tilde_controllability:=simplify (PecOB.CO. X _tilde_observability):

202 Y_tilde_controllability:=simplify (Y_tilde_observability .Pe_.CO_OB):

203 #Qutput:

204 #Here you can choose what you want to have as output, by remowving the ’#’ in
the row of the output you want.

205

206 #Input :

207 #In here The input which was given in the beginning is shown again, and also
the order of the system.

208 #P;

209 #O0rder_Differential_Equation:=N;

210 #Coefficients_Output:=eval (P);

211 #Coefficients_Input:=Q;

212

213

214 #Matrices for first order systems:
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215 #In here the matrices for the following system are given:

216 #dx/dt=Axx+Bxu

217 #dy/dt=Cxx

218 #A_Observer:=A_observer; B_Observer:=B_observer; C_Observer:=C_observer;

219 #A_Observability:=A_observability; B_Observability:=B_observability;
C_Observability:=C_observability ;

220 #A_Controller:=eval (A_controller); B_Controller:=eval(B_controller);
C_Controller:=eval (C_controller);

221 #A_Controllability:=eval (A_controllability); B_Controllability:=eval(
B_controllability); #C_Controllability:=eval( C_controllability);

220 #Coefficientmatriz and Canonical Factorizations:

223 #In here the coefficient matrics and its cannonical canonical factorisations
are given:

224 #PI_Tilde:=Pi_tilde;

225 #X_Tilde_Observer:=X_tilde_observer;

226 #Y_Tilde_Observer:=transpose ( Y_tilde_observer);

207 #X_Tilde_Observability:=X_tilde_observability;

208 #Y_Tilde_Observability:=transpose( Y_tilde_observability);

220 #X_Tilde_Controller:=X_tilde_controller;

230 #Y_Tilde_Controller:=transpose (Y_tilde_controller);

231 #X_Tilde_Controllability:=X_tilde_controllability;

232 #Y_Tilde_Controllability:=transpose (Y_tilde_controllability);
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