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Abstract

Most papers demonstrating an Echo State Neural Net-
work (ESNN) use a scale measure input to control the
output. In this paper we describe and show the results
for 6 different scenarios to find out what pulse-based
amplitude modulation method is best. In these scenar-
ios we vary the information offered on the pulse ampli-
tude and the pulse width. Is information coded on these
two independent variables processed with the same er-
ror and optimal parameters? Our results show that in-
formation on the pulse amplitude yields a lower error
compared to information on the pulse width.

1 Introduction

One problem with ESNN encountered in an earlier
study (van de Sanden (2010)) was that network ac-
tivity fades over time. What begins as a perfect gait
for a biped robot soon ends in a halt. One solution
is the one tested in this paper, modulation. If the
goal is to make the robot walk at a steady pace
the input into the ESN would normally be a stable
value corresponding with that speed. This provides
no extra activity into the network as long as the
desired speed remains the same. Using amplitude
modulation every desired step results in a pulse on
the input nodes, giving the whole network a thrust
of activity. In this paper we focus on coding infor-
mation on the width and height of that pulse.

1.1 Echo State Neural Networks

Echo State Neural Networks (Jaeger (2001)) are
recurrent neural networks that have sparse con-
nections and lack ordering in the hidden layer or
"Dynamic reservoir. See figure 1 for an illustration.

The training of this type of network is in the ad-
justment of the connections to the output neuron,
the rest of the connections are generated randomly
and are not adjusted during training. It is difficult
to find the best parameters for the dynamic reser-
voir as they seem different for each task. We use
the Monte Carlo algorithm (Metropolis and Ulam
(1949)) combined with a sweep as technique for
finding the best combination of parameters.

In this experiment leaky integrator neurons are
used; every time step a bit of activity from the last
time step remains in the neuron. Leaky-integrator
ESNs are only slightly more complicated to imple-
ment and use than standard ESNs and appear to us
as quite flexible devices when timescale phenomena
are involved (Jaeger, Lukosevicius, Popovici, and
Siewert (2007)).

1.2 Pulse-based Input

The usage of a pulse based input is not an entirely
new phenomenon. At least two earlier studies used
a pulse to feed information into the network. We
will discuss these before explaining the difference
with our own experiment.

1.2.1 Timer experiment

An experiment with a timer is described in Jaeger
(2002). The ESNN in this experiment has two input
neurons: one to express a ’go’ signal, one to express
the length of the timer. If no input is offered the
output neuron will stay close to 0. When the net-
work receives a pulse on the first input the activity
of the output neuron shoots to a high equilibrium
and stays there until an amount of time has passed.
The second input controls the amount of time the
output neuron stays high. A higher input leads to
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Figure 1: Two common types of neural net-
works. The network a) illustrates a regular mul-
tilayer perceptron. Notice the ordering of layers,
in this case two layers. Network b) illustrates
a typical recurrent network, like an echo state
network. Image cited from Jaeger (2002)

a longer period the output stays high. Thus mim-
icking a timer.

1.2.2 Memory experiment

An experiment with four bits memory is described
in Sussillo and Abbott (2009). The ESNN in this
experiment has eight input neurons and four output
neurons. Each output neuron has two input neurons
paired with it through learning. If a pulse is offered
at the first of the two the output neuron rises to a
high equilibrium. If a pulse is offered at the second
of the two the output neuron will drop to a low
equilibrium. When no input is offered the output
neuron will move about the equilibrium it was last
set to.

1.3 This study

These two studies used the pulse only to give
one type of information; either timing or a status
change. We will explore how a pulse can be used for
manipulating a sine output. A pulse has two inde-
pendent variables: the height or amplitude and the

width or length. We will first find out if they are
both equally effective to convey information, then
we will use them concurrently.

2 Method

In our experiment we will try to use the two vari-
ables of a pulse, height (H) and width (W) to pro-
duce a sine wave with a amplitude (A) and a pe-
riod (P). We have constructed six different scenar-
ios paired in three tests. In each test we will com-
pare a H to A and W to P relation situation versus
a H to P and W to A relation. Figure 2 shows an
example for all scenarios.

HonP: Pulse height codes for the desired period
of the sine wave. Pulse width and the desired
amplitude of the sine wave remain constant.

AonP: Pulse width codes for the desired period
of the sine wave. Pulse height and the desired
amplitude of the sine wave remain constant.

AonW: Pulse height codes for the desired ampli-
tude of the sine wave. Pulse width and the de-
sired deriod of the sine wave remain constant.

HonW: Pulse width codes for the desired ampli-
tude of the sine wave. Pulse height and the de-
sired period of the sine wave remain constant.

HonP+AonW: Pulse height codes for the desired
period of the sine wave. Pulse width codes for
the desired amplitude of the sine wave.

AonP+HonW: Pulse width codes for the desired
period of the sine wave. Pulse height codes for
the desired amplitude of the sine wave.

We will compare the ten best scores with a t-test
for the pairs 1 and 2, 3 and 4, 5 and 6, to see if there
is a significant difference between the two scenarios.
The reason to use only the best ten is because in
a situation where our method is used (for example
to control a locomotion in a robot) only the best
parameter combinations will examined further. We
consider the ten best results to be representative of
this.



2.1 Network Parameters

To find the best parameters for each scenario we
perform a sweep on a pre-determined interval The
tested parameters are: the amount of neurons in
the reservoir (10 < n < 100, An = 5), the
chance of connection between neurons in the reser-
voir (0.01 < ¢ < 0.1, Ac = 0.01) and the amount of
activity carried to the next time step (0.1 < ! < 0.4,
Al = 0.05). For each step in the sweep we perform
a run of the monte carlo alogrithm with 20 child
nodes to find the best solution in that neighbor-
hood. Each combination is tested three times, only
the lowest error will be logged.

The input neuron is connected to one in every
ten neurons in the reservoir with a uniform random
weight. The output neuron is connected to every
neuron in the reservoir, weights from the reservoir
to the output clamps to zero during training and
computed by the training algorithm after training,
weights from the output neuron to the reservoir are
initialized uniformly random.

Algorithm 2.1 Compute best result
for nIndex = 10 to 100 step 5 do
for cIndex = 0.01 to 0.1 step 0.01 do
for lIndex = 0.1 to 0.4 step 0.05 do
n «— nilndex
c < cIndex
|+ lIndex
bestError « Infinite
for i =1 to 20 do
for j=1to 3 do
Error — ESN(n,c,l)
if Error <bestError then
bestError «— Error
nBest «— n
cBest — ¢
[Best «— [
end if
end for
n <« nBest + discreteNoise(—3,3)
c — cBest +
interval Noise(—0.01,0.01)
| «+ lBest+interval Noise(—0.02,0.02)
end for
log file « all variables
end for
end for
end for

Algorithm 2.1 shows our optimization script. The
three parameters varied are n: the amount of neu-
rons in the reservoir, ¢: the chance of connection
between two neurons in the reservoir and ! the per-
centage of activation in a neuron that has not been
retained from the previous time step. Because of
the random initialization of the network every run
yields a different result. Each parameter combina-
tion is tested three times to ensure we do not miss a
good combination. Twenty times we will look for a
better combination right next to the starting point.
The amount of noise is about one step of the sweep,
this way the script will not stray away too far from
the beginning.

To measure the error we use the mean squared
error function described in equation (2.1). Where d
is the desired output signal, y is the output from
the network and L is the amount of time steps in
the signal.

L
MSE = 1/L'Z(di —yi)?

i=1

(2.1)

The formula below is the update rule for the ac-
tivation of the neurons in the reservoir. x[n] is the
vector with the activation of the neurons on time
step n, t[n] the the activation of the input neuron
on time step n, d[n] the activation the output neu-
ron on time step n.

(1—=10)-zn—1]+1-tanh(Wy, - t[n] +
Wy - a:[n — 1] + Whack - d[n — 1])

z[n] =

2.2 Pulse creation

The input and desired output are constructed in
blocks, these blocks are merged until a signal with
more than 2000 time steps has been created. Then
25 empty time steps are added to the beginning of
the desired output and added to the end of the in-
put signal to create a delay slightly longer than the
longest possible pulse. The formula used for creat-
ing the output is (2.2). Where A is the amplitude
of the sine wave (0.2 < A < 0.8 uniform randomly
chosen or A = 0.8 in the fixed amplitude scenarios)
and P the amount of time steps the wave is long
(P =120 v P =180 V P = 240 uniform ran-
domly chosen or P = 120 when in the fixed period
scenarios).



Output = A - sin(2 -7 - P) (2.2)

The input signal is created using the following
steps:

1. Create a empty vector as long as the corre-
sponding output.

2. Determine the desired height H. For the P to
H scenarios this is H = P/240. For the A to H
scenarios the is H = A/0.8.

3. Determine the desired width W. For the P to
H scenariosisis W =0.1- P W = 30- A. Then
round W to the nearest integer.

4. Set the first W values for the vector to the
value H, the rest to zero.

Test2: Amplitude on width
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Figure 3: An example output (red) with the
corresponding input used in this experiment
(green) and the desired output (blue) used in
other experiments. The mse for this run was
0.005. For illustrative purposes the length of this
example is only 625 time steps long, while test-
ing we used approximately 2000 time steps

3 Results

3.1 HonP versus AonP

The t-test for the best 10 results show that there
is a significant difference in MSE between the two
scenarios (p = 5.0742 - 10=%). There is no signifi-
cance between the amount of neurons in the reser-
voir (p = 0.18). Period on height having the lowest
error on average (MSE = 0.03 on the best run).
All (P on H) or most (P on W, 8) of the ten lowest
errors are encountered with equal or less than 30
neurons in the reservoir. Out of the ten best only
the ones with less than 15 neurons in the reservoir
have a chance of connection with another neuron
higher than 0.02 (3 out of 10 for both scenarios).

3.2 AonW versus HonW

The t-test for the best 10 results show that there
is a significant difference in MSE between the two
scenarios (p = 0.0033). There is no significance
between the amount of neurons in the reservoir
(p = 0.12). Amplitude on height having the low-
est error (MSE = 0.0003 on the best run). In this
case, all of the ten lowest errors are encountered
with equal or more than 30 neurons in the reser-
voir. The amount of activation carried over to the
next time step is almost always under 20% (10 out
of 10 for A on H, 8 out of 10 for A on W).

3.3 HonP+AonW
AonP+HonW

The t-test for the best 10 results show that there is
a significant difference in MSE between the two sce-
narios (p = 5.2785 - 107?). Period on width, ampli-
tude on height sporting the lowest error (M SE =
0.0004 on the best run). Most (9 out of 10) it’s
solutions have more than 50 neurons in the reser-
voir. While amplitude on width, period on height
all have less than 50 neurons. This difference is sig-
nificant (p = 0.0014).

versus

4 Discussion

We expect that the scenarios with modulation on
the pulse width will have a higher error or will have
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Figure 4: Showing the ten best parameter com-
binations for both scenarios of each test. The
amount of neurons in the dynamic reservoir on
the x-axis, the chance of connection between
neurons in the reservoir on the y-axis.

Figure 6: The error landscape for scenario 5 with
[ = 0.05. Lighter areas have lower error than
darker areas.
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binations for both scenarios of each test. The
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neuron carried over to the next time step on Square Error) is logarthimic.

the y-axis.



solutions with more neurons compared to the sce-
narios with pulse height modulation. Extracting in-
formation from the width of a pulse is a more dif-
ficult task than from the height of a pulse. Pulse
height offers it’s value for an number of time steps.
For extracting pulse width information the network
has to count the number of time steps the input
signal is active. So not only is more recollection in-
volved, the information is also offered only once.

In line with our expectations is that if informa-
tion is offered to the system, information on the
pulse height yields lower errors compared to infor-
mation on pulse width (tests 1 and 2). Combining
that with the results of test 3 it is clear that period
information is harder to process than amplitude in-
formation of the sine wave.

In test 1 the best solutions have a reservoir
smaller than 30 neurons. One explanation for this
could be that more neurons lead to overfitting. In
test 2 and 3 the best solutions use more neurons
in the reservoir. Test 3 utilizes more information so
it would be logical if the best solutions use more
neurons. For test 2 we do not have an explanation.
It could also be that there is a complex relation-
ship between the other parameters that we have
not found out about yet.

The idea for this experiment came from van de
Sanden (2010). A lot of time was spend on his code
but it sadly it failed to run. In the experiment van
de Sanden used a ESNN to control biped locomo-
tion. This would be an excellent way to test our
own tests: error values only give so much informa-
tion, actually see how a robot would respond would
give them much more meaning. An error resulting
in a slightly faster gait is no serious problem but
an error destabilizing the gait would be disastrous.

In the article described in 1.2.2 (Sussillo and Ab-
bott (2009)) a new way of training a ESNN is
explained, called FORCE learning. In our experi-
ments we calculate the weights from the neurons in
the reservoir to the output neuron using the pseudo
inverse of the activity during training, all other
weights are initialized random and stay the same.
FORCE learning has a few scenarios, in the most
extreme version it alters all weights in the reser-
voir and to the output during training. It does not
directly use the desired output signal but the the
error between the desired and the produced output.
This method is closer to being biological plausible.
However, we could not produce a working imple-

mentation of our experiments using this training
algorithm.

Due to time constrains we did not compare the
pulse method to the regular input method. The
regular input would probably yield lower errors.
The height and width of a pulse must be stored
in the reservoir somehow, with the normal input
this would not be necessary. Our third test would
be impossible to do without a second input neuron;
basically eliminating the difficulty of the test.

Further research is also needed to find out the
effects of unexpected input signals. Consider the
situation where two pulses are offered right after
each other: would the network add the resulting
sine waves on the output neuron?

This research shows that pulse modulation is a
possible way to offer input to an ESNN. We use
only one modulation technique: one pulse per sine
wave. Situations with multiple pulses per wave are
another modulation technique that should be ex-
plored further. This would give the power to modify
a wave mid-cycle.
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Figure 2: Example output (top row) with the corresponding input used in this experiment (second
and third rows). In the first column the amplitude is fixed (corresponding with scenarios HonP
and AonP), in the second column the frequency is fixed (corresponding with scenarios AonW and
HonW), in the third column both are varied (corresponding with scenarios HonP+AonW and
AonP+HonW). For illustrative purposes the length of this example is approximately 250 time
steps long, while testing we used approximately 2000 time steps



