Javascript must be enabled for the correct page display

Predicting Memory Robustness of Spiking Recurring Neural Networks

Jerusalem, Luuk (2022) Predicting Memory Robustness of Spiking Recurring Neural Networks. Bachelor's Thesis, Applied Physics.

[img] Text
[bAppP]_[2022]_[JerusalemL].pdf
Restricted to Registered users only

Download (1MB)

Abstract

De begeleider en/of auteur heeft geen toestemming gegeven tot het openbaar maken van de scriptie. The supervisor and/or the author did not authorize public publication of the thesis.

Item Type: Thesis (Bachelor's Thesis)
Supervisor name: Chicca, E. and Onck, P.R.
Degree programme: Applied Physics
Thesis type: Bachelor's Thesis
Language: English
Date Deposited: 07 Jul 2022 10:23
Last Modified: 07 Jul 2022 10:23
URI: https://fse.studenttheses.ub.rug.nl/id/eprint/27667

Actions (login required)

View Item View Item